• Title/Summary/Keyword: binary mixtures

Search Result 336, Processing Time 0.022 seconds

Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State (수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산)

  • 김민수;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2189-2205
    • /
    • 1991
  • Thermodynamic properties of binary nonazeotropic refrigerant mixtures are estimated by using a modified Carnhan-Starling equation of state. In this study, pure component refrigerants such as R14, R23, R13, R13 B1, R22, R12, R134a, R152a, R142b, RC318, R114, R11, R123 and R113 are chosen and the thermodynamic properties of enthalpy and entropy are calculated in terms of relevant variables. The modified Carnahan-Starling equation of state is compared with the carnahan-Staring-De Santis equation of sate. Results show that the relative errors become slightly smaller with the equation of state proposed in this study. Correlations are obtained for the mixtures of which the vapor liquid equilibruim data are available to us in the literature. Those mixtures are R14/R23, R23/R12, R13/R12, R13/R11, R13B1/R22, R13B1/RC318, R12/RC138, R12/R114 and R12/R11. The binary interaction coefficients are found under the condition of minimizing the pressure deviations at the vapor liquid equiblibrium state and the estimation of the vapor liquid equilibrium for the refrigerant mixtures is done. Pressure-enthalpy and temperature-entropy diagrams are plotted for the refrigerant mixtures of specific composition.

Viscometric Studies of Molecular Interactions in Binary Mixtures of Formamide with Alkanol at 298.15 and 308.15 K

  • Gahlyan, Suman;Verma, Sweety;Rani, Manju;Maken, Sanjeev
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.520-529
    • /
    • 2017
  • Viscosity data were measured at 298.15 K and 308.15 K for formamide + 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol or 2-methyl-2-propanol mixtures. For an equimolar mixture, deviation in viscosity follows the sequence: 2-methyl-2-propanol >2-methyl-1-propanol>1-butanol>2-propanol>1-propanol. The viscosity data were further analyzed in terms of graph theory. Free energy of activation was also calculated from experimental viscosity data along with previously reported excess volume data. The deviation in viscosity and free energy of activation were fitted to Redlich-Kister polynomial equation. The viscosity data were also correlated by correlations like Grunberg-Nissan, Tamura-Kurata, HindMcLaughlin-Ubbelohde, and Katti-Chaudhari relation. Various adjustable parameters, $G_{12}$, $T_{12}$, $H_{12}$, and $W_{vis}/RT$, of various correlations were used to predict viscosity deviation of binary mixtures. Positive value of $G_{12}$ indicates strong interaction in the studied systems. Grunberg-Nissan relation has lowest deviation among the four correlations for formamide + 1-propanol or 2-propanol mixtures; and for mixtures of formamide with 1-butanol or 2-methyl-1-propanol, TamuraKurata has lowest deviation. Grunberg-Nissan gives lowest deviation for formamide + 2-methyl-2-propanol mixtures.

Thermal Decomposition Characteristics on Sodium Azide and Metallic Oxide Mixtures (나트륨 아지드와 금속산화물과의 혼합물에 대한 열분해 특성)

  • 이내우;최재욱;박광수;설수덕;왕석주
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.106-113
    • /
    • 1997
  • The thermal characteristics of two binary mixtures by sodium azide/manganese dioxide and ferric oxide, two ternary mixtures by sodium azide/silicon dioxide/manganese dioxide and ferric oxide were studied to obtain the basic data of gas-generating agents for air bags. The thermal reaction for all mixtures started at about $420^{\circ}C$, but the temperature at which the reaction rate reached a maximum was different with the states of samples. According to reaction results, nitrogen, nitrogen oxide and nitrogen dioxide were detected by GC-MS and so many kinds of new chemicals from sodium azide and metal oxide mixtures by XRD. NMS is considered as most stable and reasonable mixture for this types of gas-generating agents.

  • PDF

Performance evaluation of R22 alternative refrigerants (R22 대체냉매의 성능 평가)

  • 송용재;박봉진;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.292-302
    • /
    • 1998
  • In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R143a, R152a, and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in most of the residential air conditioners and heat pumps. The heat pump was of 1 ton capacity and water was employed as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Ternary mixtures composed of R32, R125, and R134a were shown to have 4∼5% higher COP and capacity than R22 and hence they seem to be very promising candidates to replace R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COP and capacity than R22. R32/R134a binary mixtures show a 7% increase in COP and have the similar capacity to that of R22 and hence they are also good candidates to replace R22. Special care must be exercised when a suction line heat exchanger is used with these mixtures in air conditioners. Finally, the compressor discharge temperatures of all mixtures tested were lower than those of R22 by 15.g∼34.7t, which indicates that these mixtures would offer better system reliability and longer life time than R22.

  • PDF

Dielectric Study of Allyl Chloride with 2-Pentanone and 2-Hexanone in Microwave Frequency Range

  • Sudake, Yuvraj;Kamble, Siddharth;Maharolkar, Aruna;Patil, Sunil;Khirade, Prakash;Mehrotra, Suresh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3423-3426
    • /
    • 2012
  • Dielectric measurement on binary mixtures of Allyl chloride (ALC) with 2-Pentanone (2-PE) and 2-Hexanone (2-HE) has been carried out over the entire concentration range using Time Domain Reflectometry (TDR) technique at various temperatures in microwave frequency range of 10 MHz to 10 GHz. The static dielectric constant, excess static dielectric constant (${\varepsilon}^E_S$), effective Kirkwood correlation factor ($g^{eff}$) of binary mixtures over entire concentration range were determined to study the effect of increasing alkyl group of ketones on hetero molecular interaction. It was found that magnitude of excess static dielectric constant of mixtures increases with increase of alky group of ketones. The study reveals that the dipole moment of Allyl chloride in mixture have antiparallelism tendency where as 2-pentanone and 2-hexanone have parallelism tendency. Excess static dielectric constant is also fitted to Redlich-Kister equation to get information about rates of multimers formation.

Permeability and mechanical properties of binary and ternary cementitious mixtures

  • Sadrmomtazi, Ali;Tahmouresi, Behzad;Amooie, Morteza
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.423-436
    • /
    • 2017
  • Today, pozzolans are widely used in construction for various reasons such as technical and economic efficiency. In this research, in order to evaluate some of important properties of concrete, silica fume and fly ash have been used as a replacement for cement in different mass percentages. Concrete mixtures were made from a water-cement ratio of (0.45) and cured under similar conditions. The main focus of this study was to evaluate the permeability and mechanical properties of concrete made from binary and ternary cementitious mixtures of fly ash and silica fume. In this study permeability of concrete was studied by evaluating the sorptivity, water absorption, water penetration depth, electrical resistivity and rapid chloride permeability (RCP) tests. Mechanical properties of concrete were evaluated with compressive strength, splitting tensile strength and modulus of elasticity. Scanning electronic microscopy (SEM) was used to characterize the effects of silica fume and fly ash on the pore structure and morphology of concrete with cement based matrix. The results indicated that the incorporation of silica fume and fly ash increased the mechanical strength and improved the permeability of concrete.

Comparison of Experimental Data on the Fluctuation Integral Gij with the Calculated Results Based on the Activity Coefficient Model in Binary Mixtures Containing c-Hexane (c-hexane을 포함하는 이성분계 혼합물에서 활동도계수 모델을 이용한 변동적분 Gij의 계산 수치와 실험 수치의 비교)

  • Hur, Kwang-II;Kwon, Yong-Jung
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.203-209
    • /
    • 2000
  • The fluctuation integrals which give useful information in the structure of solution are associated with the mixed direct correlation integral ($C_{12}$) known. Using its weighted arithmetic mean of $C_{11}$ and $C_{22}$ and the activity coefficient model, the fluctuation integrals on solute-solute, solvent-solute, and solvent-solvent can be calculated in the function of mole fraction. In this work, several binary mixtures containing c-hexane were tested and the results on the fluctuation integrals were rather good.

  • PDF

Inclusion Selectivity of the Cyanocadmate Host Complex with Piperazine Ligand for Aromatic Guest Molecules; Benzene, Toluene, Ethylbenzene and Xylene Isomers (Piperazine 리간드를 가진 시아노카드뮴 호스트 착물의 방향족 게스트 분자에 대한 포접선택성)

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.333-338
    • /
    • 2003
  • Inclusion selectivity of a three-dimensional piperazine-ligated cyanocadmate host complex, $[Cd_x(CN)_{2x}\{HN(CH_2CH_2)_2NH\}_y]{\cdot}zG$, has been investigated for benzene (B), toluene (T), ethylbenzene (E), o- (O), m- (M), and p-xylene (P) isomers as the aromatic guest molecules. From the binary, ternary and quarternary guest mixtures of E and xylene isomer (X), the order of inclusion selectivity in the host complex is O>E>P>M. From the binary to quinary BTX mixtures, the order of preference in the complex is seen to be B>T>O${\gg}$P>M.