• Title/Summary/Keyword: binarized method

Search Result 74, Processing Time 0.027 seconds

Binarization Method of Night Illumination Image with Low Information Loss Using Fuzzy Logic (퍼지논리를 이용하여 정보손실이 적은 야간조명 영상의 이진화 방법 연구)

  • Lee, Ho Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.540-546
    • /
    • 2019
  • This study suggests a binarization method that minimizes information loss for night illumination images. The object of the night illumination image is an image which is not focused due to the influence of illumination and is not identifiable. Also, the image has a brightness area in only a part of the brightness histogram. So the existing simple binarization method is hard to get good results. The proposed binarization method uses image segmentation method and image merging method. In the stepwise divided blocks, we divide into two regions using the triangular type of fuzzy logic. The value 0 of the membership degree is binarized at the present step, and the value of the membership degree 1 is binarized after the next step. Experimental results show that night illumination images with minimal loss of information can be obtained in a dark area brightness range.

Recognition of Car License Plates Using Difference Operator and ART2 Algorithm (차 연산과 ART2 알고리즘을 이용한 차량 번호판 통합 인식)

  • Kim, Kwang-Baek;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2277-2282
    • /
    • 2009
  • In this paper, we proposed a new recognition method can be used in application systems using morphological features, difference operators and ART2 algorithm. At first, edges are extracted from an acquired car image by a camera using difference operators and the image of extracted edges is binarized by a block binarization method. In order to extract license plate area, noise areas are eliminated by applying morphological features of new and existing types of license plate to the 8-directional edge tracking algorithm in the binarized image. After the extraction of license plate area, mean binarization and mini-max binarization methods are applied to the extracted license plate area in order to eliminated noises by morphological features of individual elements in the license plate area, and then each character is extracted and combined by Labeling algorithm. The extracted and combined characters(letter and number symbols) are recognized after the learning by ART2 algorithm. In order to evaluate the extraction and recognition performances of the proposed method, 200 vehicle license plate images (100 for green type and 100 for white type) are used for experiment, and the experimental results show the proposed method is effective.

Character Extraction of Car License Plates using RGB Color Information and Fuzzy Binarization (RGB 컬러 정보와 퍼지 이진화를 이용한 차량 번호판의 개별 문자 추출)

  • 김광백;김문환;노영욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • In this paper we proposed the novel feature extraction method that is able to extract the individual characters from the license plate area of the car image more precisely by using the RGB color information and the fuzzy binarization newly proposed. The proposed method, first, extracts from the original image the areas that the pixels with the colors around the green are concentrated on as the candidate areas of the license plate, and selects the area with the most intensive distribution of pixels with the white color among the candidate areas as the license plate area. Second the noises of the license plate area should be removed by using 34{\times}$3 Sobel masking, and the fuzzy binarization method are proposed and applied to the license plate area to generate the binarized image of the license plate area. Lastly, the application of the contour tracking algorithm to the binarized area extracts the individual characters from the license plate area. The experiment on a variety of the real car images showed that the proposed method generates the higher rate of success for character extraction than the previous methods.

A Study on Recognition of New Car License Plates Using Morphological Characteristics and a Fuzzy ART Algorithm (형태학적 특징과 퍼지 ART 알고리즘을 이용한 신 차량 번호판 인식에 관한 연구)

  • Kim, Kwang-Baek;Woo, Young-Woon;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.273-278
    • /
    • 2008
  • Cars attaching new license plates are increasing after introducing the new format of car license plate in Korea. Therefore, a car new license plate recognition system is required for various fields using automatic recognition of car license plates, automatic parking management systems and arrest of criminal or missing vehicles. In this paper, we proposed an intelligent new car license plate recognition method for the various fields. The proposed method is as follows. First of all, an acquired color image from a surveillance camera is converted to a gray level image and binarized by block binarization method. Second, noises of the binarized image removed by morphological characteristics of cars and then license plate area is extracted. Third, individual characters are extracted from the extracted license plate area using Grassfire algorithm. lastly, the extracted characters are learned and recognized by a fuzzy ART algorithm for final car license plate recognition. In the experiment using 100 car images, we could see that the proposed method is efficient.

  • PDF

Binarization and Stroke Reconstruction of Low Quality Character Image for Effective Character Recognition (효과적인 문자 인식을 위한 저 품질 문자 영상의 이진화 및 획 재구성 방법)

  • Kim, Do-Hyeon;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.608-618
    • /
    • 2007
  • Image binarization is an important preprocessing to identify the object of interest by dividing pixels into the background and object. We proposes efficient binarization method and a stroke reconstruction method of the low quality character image for an effective character recognition. First, the character image is binarized by using the both advantages of local and global thresholding method and then the noise elimination around the character stroke and the hole filling on the stoke by the analysis of the binarized stroke image are performed to enhance the quality of the character stroke. Proposed binarization algorithm for character image achieved an efficiency of both processing speed and performance by the adaptive threshold selection. Moreover, We could get a high qualify binary image by a stroke reconstruction of the step-by-step denoising process.

Simple Spot Method of Image Analysis for Evaluation of Highly Marbled Beef

  • Irie, M.;Kohira, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.592-596
    • /
    • 2012
  • The simple method of evaluating highly marbled beef was examined by image analysis. The images of the cross section at the 6 to 7th rib were obtained from 82 carcasses of Wagyu cattle. By using an overall trace method, the surrounding edges of the longissimus thoracis and three muscles were traced automatically and manually with image analysis. In a spot method, 3 to 5 locations (2.5 or 3.0 cm in diameter) for each muscle were rapidly selected with no manual trace. The images were flattened, binarized, and the ratio of fat area to muscle area was determined. The correlation coefficients for marbling between different muscles, and between the overall trace and the spot methods were 0.55 to 0.81 between different muscles and 0.89 to 0.97, respectively. These results suggested that the simple spot method is speedy and almost as useful as the overall trace method as a measuring technique for beef marbling in loin muscles, especially for highly marbled beef.

Stroke Width-Based Contrast Feature for Document Image Binarization

  • Van, Le Thi Khue;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • Automatic segmentation of foreground text from the background in degraded document images is very much essential for the smooth reading of the document content and recognition tasks by machine. In this paper, we present a novel approach to the binarization of degraded document images. The proposed method uses a new local contrast feature extracted based on the stroke width of text. First, a pre-processing method is carried out for noise removal. Text boundary detection is then performed on the image constructed from the contrast feature. Then local estimation follows to extract text from the background. Finally, a refinement procedure is applied to the binarized image as a post-processing step to improve the quality of the final results. Experiments and comparisons of extracting text from degraded handwriting and machine-printed document image against some well-known binarization algorithms demonstrate the effectiveness of the proposed method.

Fast Extraction of Pedestrian Candidate Windows Based on BING Algorithm

  • Zeng, Jiexian;Fang, Qi;Wu, Zhe;Fu, Xiang;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • In the field of industrial applications, the real-time performance of the target detection problem is very important. The most serious time consumption in the pedestrian detection process is the extraction phase of the candidate window. To accelerate the speed, in this paper, a fast extraction of pedestrian candidate window based on the BING (Binarized Normed Gradients) algorithm replaces the traditional sliding window scanning. The BING features are extracted with the positive and negative samples and input into the two-stage SVM (Support Vector Machine) classifier for training. The obtained BING template may include a pedestrian candidate window. The trained template is loaded during detection, and the extracted candidate windows are input into the classifier. The experimental results show that the proposed method can extract fewer candidate window and has a higher recall rate with more rapid speed than the traditional sliding window detection method, so the method improves the detection speed while maintaining the detection accuracy. In addition, the real-time requirement is satisfied.

Recognition of Concrete Surface Cracks Using Enhanced Max-Min Neural Networks (개선된 Max-Min 신경망을 이용한 콘크리트 균열 인식)

  • Kim, Kwang-Baek;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.77-82
    • /
    • 2007
  • In this paper, we proposed the image processing techniques for extracting the cracks in a concrete surface crack image and the enhanced Max-Min neural network for recognizing the directions of the extracted cracks. The image processing techniques used are the closing operation or morphological techniques, the Sobel masking for extracting for edges of the cracks, and the iterated binarization for acquiring the binarized image from the crack image. The cracks are extracted from the concrete surface image after applying two times of noise reduction to the binarized image. We proposed the method for automatically recognizing the directions of the cracks with the enhanced Max-Min neural network. Also, we propose an enhanced Max-Min neural network by auto-tuning of learning rate using delta-bar-delta algorithm. The experiments using real concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the enhanced Max-Min neural network was effective in the recognition of direction of the extracted cracks.

  • PDF

An Efficient Extraction of Pulmonary Parenchyma in CT Images using Connected Component Labeling

  • Thapaliya, Kiran;Park, Il-Cheol;Kwon, Goo-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.661-665
    • /
    • 2011
  • This paper presents the method for the extraction of the lungs part from the other parts for the diagnostic of the lungs part. The proposed method is based on the calculation of the connected component and the centroid of the image. Connected Component labeling is used to label the each objects in the binarized image. After the labeling is done, centroid value is calculated for each object. The filing operation is applied which helps to extract the lungs part from the image retaining all the parts of the original lungs image. The whole process is explained in the following steps and experimental results shows it's significant.