• Title/Summary/Keyword: bilinear forms on ${\mathbb{R}}^3$

Search Result 3, Processing Time 0.016 seconds

THE UNIT BALL OF THE SPACE OF BILINEAR FORMS ON ℝ3 WITH THE SUPREMUM NORM

  • Kim, Sung Guen
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.487-494
    • /
    • 2019
  • We classify all the extreme and exposed bilinear forms of the unit ball of ${\mathcal{L}}(^2l^3_{\infty})$ which leads to a complete formula of ${\parallel}f{\parallel}$ for every $f{\in}{\mathcal{L}}(^2l^3_{\infty})^*$. It follows from this formula that every extreme bilinear form of the unit ball of ${\mathcal{L}}(^2l^3_{\infty})$ is exposed.

The Geometry of the Space of Symmetric Bilinear Forms on ℝ2 with Octagonal Norm

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.781-791
    • /
    • 2016
  • Let $d_*(1,w)^2 ={\mathbb{R}}^2$ with the octagonal norm of weight w. It is the two dimensional real predual of Lorentz sequence space. In this paper we classify the smooth points of the unit ball of the space of symmetric bilinear forms on $d_*(1,w)^2$. We also show that the unit sphere of the space of symmetric bilinear forms on $d_*(1,w)^2$ is the disjoint union of the sets of smooth points, extreme points and the set A as follows: $$S_{{\mathcal{L}}_s(^2d_*(1,w)^2)}=smB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}extB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}A$$, where the set A consists of $ax_1x_2+by_1y_2+c(x_1y_2+x_2y_1)$ with (a = b = 0, $c={\pm}{\frac{1}{1+w^2}}$), ($a{\neq}b$, $ab{\geq}0$, c = 0), (a = b, 0 < ac, 0 < ${\mid}c{\mid}$ < ${\mid}a{\mid}$), ($a{\neq}{\mid}c{\mid}$, a = -b, 0 < ac, 0 < ${\mid}c{\mid}$), ($a={\frac{1-w}{1+w}}$, b = 0, $c={\frac{1}{1+w}}$), ($a={\frac{1+w+w(w^2-3)c}{1+w^2}}$, $b={\frac{w-1+(1-3w^2)c}{w(1+w^2)}}$, ${\frac{1}{2+2w}}$ < c < ${\frac{1}{(1+w)^2(1-w)}}$, $c{\neq}{\frac{1}{1+2w-w^2}}$), ($a={\frac{1+w(1+w)c}{1+w}}$, $b={\frac{-1+(1+w)c}{w(1+w)}}$, 0 < c < $\frac{1}{2+2w}$) or ($a={\frac{1=w(1+w)c}{1+w}}$, $b={\frac{1-(1+w)c}{1+w}}$, $\frac{1}{1+w}$ < c < $\frac{1}{(1+w)^2(1-w)}$).

Extreme Points, Exposed Points and Smooth Points of the Space 𝓛s(2𝑙3)

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.485-505
    • /
    • 2020
  • We present a complete description of all the extreme points of the unit ball of 𝓛s(2𝑙3) which leads to a complete formula for ║f║ for every f ∈ 𝓛s(2𝑙3). We also show that $extB_{{\mathcal{L}}_s(^2l^3_{\infty})}{\subset}extB_{{\mathcal{L}}_s(^2l^n_{\infty})}$ for every n ≥ 4. Using the formula for ║f║ for every f ∈ 𝓛s(2𝑙3), we show that every extreme point of the unit ball of 𝓛s(2𝑙3) is exposed. We also characterize all the smooth points of the unit ball of 𝓛s(2𝑙3).