• 제목/요약/키워드: bilinear behavior

검색결과 90건 처리시간 0.019초

Numerical simulation of fracture and damage behaviour of concrete at different ages

  • Jin, Nanguo;Tian, Ye;Jin, Xianyu
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.221-241
    • /
    • 2007
  • Based on the experiment results, the damage and fracture behavior of concrete at the ages of 1d, 2d, 7d and 28d, in three-point bending and uniaxial tensile tests, were simulated with a finite element program, ABAQUS. The critical stress intensity factor $K_{IC}^s$ and the critical crack tip opening displacement ($CTOD_C$) of concrete were calculated with effective-elastic crack approach for the three-point bending test of grade C30 concrete. Based on the crack band model, a bilinear strain-softening curve was derived to simulate the LOAD-CMOD curves and LOAD-Displacement curves. In numerical analysis of the uniaxial tension test of concrete of grade C40, the damage and fracture mechanics were combined. The smeared cracking model coupling with damaged variable was adopted to evaluate the onset and development of microcracking of uniaxial tensile specimen. The uniaxial tension test was simulated by invoking the damage plastic model which took both damage and plasticity as inner variables with user subroutines. All the numerical simulated results show good agreement with the experimental results.

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending

  • Chen, Xiaohui;Gao, Bingjun;Chen, Xu
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.703-753
    • /
    • 2016
  • The ratcheting behavior was studied experimentally for Z2CND18.12N elbow piping under cyclic bending and steady internal pressure. Dozens of cyclic plasticity models for structural ratcheting responses simulations were used in the paper. The four models, namely, Bilinear (BKH), Multilinear (MKIN/KINH), Chaboche (CH3), were already available in the ANSYS finite element package. Advanced cyclic plasticity models, such as, modified Chaboche (CH4), Ohno-Wang, modified Ohno-Wang, Abdel Karim-Ohno and modified Abdel Karim-Ohno, were implemented into ANSYS for simulating the experimental responses. Results from the experimental and simulation studies were presented in order to demonstrate the state of structural ratcheting response simulation by these models. None of the models evaluated perform satisfactorily in simulating circumferential strain ratcheting response. Further, improvement in cyclic plasticity modeling and incorporation of material and structural features, like time-dependent, temperature-dependent, non-proportional, dynamic strain aging, residual stresses and anisotropy of materials in the analysis would be essential for advancement of low-cycle fatigue simulations of structures.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Unit Cell FEM Analysis Using I-Fiber Single Stitch with Different Thickness

  • Tapullima, Jonathan;Park, Gyu Yeong;Yoon, Dong Hwan;Choi, Jin Ho
    • Composites Research
    • /
    • 제34권1호
    • /
    • pp.30-34
    • /
    • 2021
  • This paper present a three-dimensional unit cell finite element analysis to predict the pull-out behavior of a single stitch in a composite laminate. The stitching process used for this study correspond to the I-fiber stitching method that has been studied by the Composite Structures Lab (CSL) as a new through-thickness reinforced method. A total of six cases were analyzed, which were divided in two groups by the stitching yarn used, 6k and 12k. Each group of cases have three different thickness according to the amount of plies; 16 plies, 32 plies and 64 plies. The finite element analysis used the cohesive zone method to characterize the single stitch reinforcement in the interface. Due to the complexity of the load vs displacement curves taken from the experimental results, a bilinear and trilinear bridging laws were implemented in the models. The cohesive parameters used for each case showed a good agreement with the experimental data and can be used for future studies.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

공업용 플라스틱의 선조립형 비좌굴가새로 보강한 건축물의 내진 성능 평가 (Seismic Performance Evaluation of Structure Reinforced with Precast-Buckling Restrained Brace of Engineering Plastics)

  • 김유성;박병태;이준호
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.31-38
    • /
    • 2021
  • The precast-buckling restrained braces(PC-BRB) reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. In this study, to examine the applicability of PC-BRB to actual structures, example structures similar to school facilities were selected and the reinforcement effect was analyzed analytically according to the damping design procedure of PC-BRB. Load-displacement curve through the incremental loading test appeared similar to the bilinear curve. Applying test result, Analytical model of PC-BRB model was constructed and applied to the example structure. As a result of the analysis, the PC-BRB showed stable hysteresis behavior without lowering the strength, and the inter story drift ratio and the shear force were reduced due to the damping effect. In addition, the reduction ratio of the shear force was similar to the reduction ratio assumed when designing the damping device.

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.