• 제목/요약/키워드: bilayer films

검색결과 104건 처리시간 0.02초

Development of Plastic/Gelatin Bilayer Active Packaging Film with Antibacterial and Water-Absorbing Functions for Lamb Preservation

  • Shijing Wang;Weili Rao;Chengli Hou;Raheel Suleman;Zhisheng Zhang;Xiaoyu Chai;Hanxue Tian
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1128-1149
    • /
    • 2023
  • In order to extend the shelf life of refrigerating raw lamb by inhibiting the growth of microorganisms, preventing the oxidation of fat and protein, and absorbing the juice outflow of lamb during storage, an active packaging system based on plastic/gelatin bilayer film with essential oil was developed in this study. Three kinds of petroleum-derived plastic films, oriented polypropylene (OPP), polyethylene terephthalate, and polyethylene, were coated with gelatin to make bilayer films for lamb preservation. The results showed significant improvement in the mechanical properties, oxygen, moisture, and light barriers of the bilayer films compared to the gelatin film. The OPP/gelatin bilayer film was selected for further experiments because of its highest acceptance by panelists. If the amount of juice outflow was less than 350% of the mass of the gelatin layer, it was difficult for the gelatin film to separate from lamb. With the increase in essential oil concentration, the water absorption capacity decreased. The OPP/gelatin bilayer films with 20% mustard or 10% oregano essential oils inhibited the growth of bacteria in lamb and displayed better mechanical properties. Essential oil decreased the brightness and light transmittance of the bilayer films and made the film yellow. In conclusion, our results suggested that the active packaging system based on OPP/gelatin bilayer film was more suitable for raw lamb preservation than single-layer gelatin film or petroleum-derived plastic film, but need further study, including minimizing the amount of essential oil, enhancing the mechanical strength of the gelatin film after water absorption.

Effects of Bilayer Period on the Microhardness and Its Strengthening Mechanism of CrN/AlN Superlattice Coatings

  • Kim, SungMin;Kim, EunYoung;Kim, DongJun;La, JoungHyun;Lee, SangYul
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.257-263
    • /
    • 2012
  • CrN/AlN multilayer coatings with various bilayer periods in the range of 1.8 to 7.4 nm were synthesized using a closed-field unbalanced magnetron sputtering method. Their crystalline structure, chemical compositions and mechanical properties have been investigated with Auger electron spectroscopy, X-ray diffractometry, atomic force microscopy, nanoindentation, scratch tests. The properties of the multilayer coatings varied strongly depending upon the magnitude of the bilayer period. The multilayer coating with a bilayer period of 1.8 nm showed the maximum hardness and an elastic modulus of approximately 37.6 and 417 GPa, respectively, which was 1.54 times higher than the hardness predicted by the rule of mixture from the CrN and AlN coatings. The hardness of the multilayer coating increased as the bilayer period decreased, i.e. as the rotation speed increased. The Hall-Petch type relationship, hardness being related to (1/periodicity)$^{-1/2}$, suggested by Lehoczky was confirmed for the CrN/AlN multilayer coatings with bilayer period close to the 5-10 nm range. With decreasing bilayer period, the surface morphology of the films became rougher and the critical load of films for adhesion strength gradually decreased.

Improved Efficiency by Insertion of TiO2 Interfacial Layer in the Bilayer Solar Cells

  • Xie, Lin;Yoon, Soyeon;Kim, Kyungkon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.432.1-432.1
    • /
    • 2016
  • We demonstrated that the power conversion efficiency (PCE) of bilayer solar cell was significantly enhanced by inserting interfacial layer between the organic bilayer film and the Al electrode. Moreover, the water contact angle shows that the bilayer solar cells suffer from the undesirable surface component which limits the charge transport to the Al electrode. The AFM measurement has revealed that the pre- and post-thermal annealing treatments results in different morphologies of the interfacial layer which is critical for the higher PCE of the bilayer solar cells. Furthermore we have investigated the electrical properties of the bilayer solar cells and obtained insights into the detailed device mechanisms. The transient photovoltage measurements suggests that the significantly enhanced Voc is caused by reducing the recombination at the interface between the organic films and the Al electrode. By inserting the TiO2 layer between the bilayer film and Al electrode, the open circuit voltage (Voc) was increased from 0.37 to 0.66V. Consequently, the power conversion efficiency (PCE) of bilayer solar cells was significantly enhanced from 1.23% to 3.71%. As the results, the TiO2 interfacial layer can be used to form an ohmic contact layer, serveing as a blocking layer to prevent the penetration of the Al, and to reduce the recombination at the interface.

  • PDF

Thermally Stable Antireflective Coatings based on Nanoporous Organosilicate

  • Kim, Su-Han;Cho, Jin-Han;Char, Kook-Heon
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.282-282
    • /
    • 2006
  • Nanoporous organosilicate thin films were realized by the microphase separation of pore generating components mixed with an organosilicate matrix. The refractive index of such nanoporous organosilicate films can be tuned in the range of $1.40{\sim}1.22$. With a nanoporous single layer with n ${\sim}1.225,\;99.85\;%$ transmittance in the visible range was achieved. In order to overcome the limitation on the narrow wavelength for high transmittance imposed by single nanoporous thin films, bilayer thin films with different reflectance for each layer were prepared by inserting high refractive index layer with a refractive index of 1.447. It is demonstrated that the novel broadband antireflection coating with improved transmittance can be easily achieved by the nanoporous bilayer thin films described in present study.

  • PDF

Ag/Ni 나노다층박막의 경도에 미치는 Bilayer 두께의 영향 (Effect of Bilayer Thickness on Hardness of Ag/Ni Nanoscale Multilayers)

  • 강봉철;김희연;권오열;임병규;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.23-26
    • /
    • 2004
  • Ag/Ni multilayers with different bilayer thickness between 3 and 100 nm produced by DC magnetron puttering have been studied by cross-sectional TEM and nanoindentation. The micrograph shows perfect layered structure with sharp interfaces between Ag and Ni layers. Absolute hardness is calculated as a reference value to compare hardness of specimens regardless of indent depth. A hardness enhancement of nearly $100\%$ over the rule-of-mixtures values, calculated from the measured hardness of single Ag and Ni thin films, is observed. The hardness increases with decreasing bilayer thickness until 8nm. This enhancement shows a good agreement with Hall-Petch relation using grain size (one half of the bilayer thickness) confined within a layer. The deformation behavior can be explained by dislocation pile-up in smaller grains.

  • PDF

Chemical Solution Deposition 방법을 이용한 BiFeO3/Pb(Zr0.52Ti0.48)O3 다층박막의 전기적 특성에 대한 연구 (Ferroelectric, Leakage Current Properties of BiFeO3/Pb(Zr0.52Ti0.48)O3 Multilayer Thin Films Prepared by Chemical Solution Deposition)

  • 차정옥;안정선;이광배
    • 한국진공학회지
    • /
    • 제19권1호
    • /
    • pp.52-57
    • /
    • 2010
  • $BiFeO_3(BFO)/Pb(Zr_{0.52}Ti_{0.48})O_3$(PZT) bilayer와 multilayer의 다층구조를 만들어 전기적 특성을 측정하여 같은 두께의 BFO 단층박막과 비교해 보았다. BFO와 PZT 용액을 이용하였으며 chemical solution deposition 방법으로 Pt/Ti/$SiO_2$/Si(100) 기판위에 각 박막을 증착하였다. X-ray diffraction 분석을 통해 모든 박막이 다배향(multi-orientation) 페로브스카이트 (perovskite) 구조를 가졌음을 확인하였다. BFO/PZT Bilayer와 multilayer 박막들은 BFO 단층박막의 비해 누설전류 값이 500 kV/cm에서 약 4, 5차수 정도 감소했으며, 이로 인해 BFO/PZT 다층박막의 강유전체 특성이 크게 향상되었다. BFO/PZT multilayer 다층구조 박막의 경우 안정된 이력곡선(hysteresis loop)을 나타냈으며, 잔류 분극(remanent polarization)의 값은 $44.3{\mu}C/cm^2$이었으며, 항전계($2E_c$) 값은 681.4 kV/cm였다.

PDP용 유전체 보호막 재료 개발을 위한 연구 (I) (두께 최적화된 $Al_2O_3/MgO$의 열처리 특성 ) (A study for development of a dielectric protection layer in PDP (I) (The annealing characteristics of thickness-optimized $Al_2O_3/MgO$))

  • 정진만;임기주;신경;이현용;정흥배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 1998
  • In this study, $Al_2O_3/MgO$ bilayer was prepared with Electron-beam evaporation and the properties of the film was investigated in order to improve the property of MgO film, which is used for the protection layer in PDP(P1asma Display Panel). The thickness of $Al_2O_3/MgO$ bilayer was optimized by the Matrix Theory for the fabrication of antireflection structure for 5350A wavelength. The secondary electron emission yields of as-deposited film and annealed film were measured and compared, the bilayer was considered for the applicability as PDP. XRD showed the strong (200) primary peak of MgO. The intensity of (200) peak in the film annealed at 300C was decreased. As the result of SEM analysis for MgO films and Alz03 films, it is considered that the morphology of the films were improved of roughness and it were condensed by annealing.

  • PDF