• Title/Summary/Keyword: bilayer

Search Result 510, Processing Time 0.028 seconds

XPS Analysis of PVDF Film Treated by Corona Discharge in Ethyl Methacrylate Vapor Atmosphere (에틸메타크릴레이트 증기 분위기에서 코로나 방전 처리한 PVDF 필름의 XPS 분석)

  • Moon, HuiKwon;Seomoon, Kyu
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.627-632
    • /
    • 2016
  • Ethyl methacrylate (EMA) monomer coupling onto the polyvinylidene fluoride (PVDF) film surface was attempted to enhance the interfacial adhesive force between PVDF-polyvinyl chloride (PVC) bilayer films via dielectric barrier corona discharge. The interfacial forces were quite enhanced when PVDF films were treated by corona discharge in an EMA 1% atmosphere. The contact angle of PVDF films decreased due to corona treatment. X-ray photoelectron spectroscopy (XPS) analysis showed that the carbon and oxygen content of the PVDF film surface increased with corona discharge while the fluoride content decreased. The curve fitting of XPS $C_{1s}$ peaks revealed that the non-polar C-C bonded carbon and oxygen-bonded carbon increased gradually with corona treatment, while the fluorine-bonded carbon decreased.

Improved Contact property in low temperature process via Ultrathin Al2O3 layer (Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상)

  • Jeong, Seong-Hyeon;Sin, Dae-Yeong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF

Histological comparison of different compressive forces on particulate grafts during alveolar ridge preservation: a prospective proof-of-concept study

  • Lee, Sung-Jo;Kang, Dae-Young;Cho, In-Woo;Shin, Hyun-Seung;Shin, Seung-Il;Fischer, Kai R.;Park, Jung-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.3
    • /
    • pp.197-206
    • /
    • 2020
  • Purpose: The aim of this study was to determine the impact of different compressive forces on deproteinized bovine bone mineral (DBBM) particles covered by native bilayer collagen membrane (NBCM) during alveolar ridge preservation (ARP) in the molar area, and to identify any histomorphometric and clinical differences according to the compressive force applied. Methods: Sockets were filled with DBBM after tooth extraction, and different compressive forces (30 N and 5 N, respectively) were applied to the graft material in the test (30 N) and control (5 N) groups. The DBBM in both groups was covered with NBCM in a double-layered fashion. A crossed horizontal mattress suture (hidden X) was then made. A core biopsy was performed using a trephine bur without flap elevation at the implant placement site for histomorphometric evaluations after 4 months. The change of the marginal bone level was measured using radiography. Results: Twelve patients completed the study. The histomorphometric analysis demonstrated that the mean ratios of the areas of new bone, residual graft material, and soft tissue and the implant stability quotient did not differ significantly between the groups (P>0.05). However, the mean size of the residual graft material showed a significant intergroup difference (P<0.05). Conclusions: The application of 2 compressive forces (5 N, 30 N) on particulate DBBM grafts during open-healing ARP in the posterior area led to comparable new bone formation, implant feasibility and peri-implant bone level.

Effec of different zirconia primers on shear bond strengths of composite resin to bonded zirconia (지르코니아 프라이머 종류에 따른 복합레진-지르코니아의 전단결합강도)

  • Shi, Hong-Bing;Kim, Tae-Seok;Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The aim of this research was to evaluate the influence of different surface treatments on the shear bond strength of zirconia ceramic to composite resin. Methods: Seventy two cylinder-shape (diameter: 5 mm; height: 12 mm) blocks of experimental industrially manufactured Y-TZP ceramic were abraded with $125{\mu}m\;Al_2O_3$ particles and randomly divided into 4 groups. All the materials were categorized as group Gc(control group - composite resin veneering on zirconia surface), Gr - composite resin veneering after surface treatment of Rocatec system (3M ESPE, Seefeld, Germany) group; Gz - composite resin veneering after surface treatment of Zirconia primer (Z-primer, Bisco, U.S.A) group; Gm - composite resin veneering after surface treatment of zirconia primer (Monobond plus, ivoclar vivadent AG, Liechtenstein) group. Two different zirconia primers and Rocatec system were used to zirconia cylinders (n=16) onto the zirconia surface. Zirconia specimens, polished and roughened, were pretreated and composite bilayer cylinders bonded using conventional adhesive techniques. Results: Shear bond strengths were analyzed using single-factor ANOVA(p<0.05). Bond strength values achieved after airbone particle abrasion and zirconia surface pre-treatments(p<0.05). Conclusion: Shear bond strength tests denmonstrated that zirconia primer is a viable method to improved bond strength between zirconia ceramic core and veneering composites.

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan;Huh, Joo-Youl;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

Shape anisotropy and magnetic properties of Co/Ni anti-dot arrays

  • Deshpande, N.G.;Seo, M.S.;Kim, J.M.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.444-444
    • /
    • 2011
  • Recently, patterned magnetic films and elements attract a wide interest due to their technological potentials in ultrahigh-density magnetic recording and spintronic devices. Among those patterned magnetic structures, magnetic anti-dot patterning induces a strong shape anisotropy in the film, which can control the magnetic properties such as coercivity, permeability, magnetization reversal process, and magneto-resistance. While majority of the previous works have been concentrated on anti-dot arrays with a single magnetic layer, there has been little work on multilayered anti-dot arrays. In this work, we report on study of the magnetic properties of bilayered anti-dot system consisting of upper perforated Co layer of 40 nm and lower continuous Ni layer of 5 nm thick, fabricated by photolithography and wet-etching processes. The magnetic hysteresis (M-H) loops were measured with a superconducting-quantum-interference-device (SQUID) magnetometer (Quantum Design: MPMS). For comparison, investigations on continuous Co thin film and single-layer Co anti-dot arrays were also performed. The magnetic-domain configuration has been measured by using a magnetic force microscope (PSIA: XE-100) equipped with magnetic tips (Nanosensors). An external electromagnet was employed while obtaining the MFM images. The MFM images revealed well-defined periodic domain networks which arise owing to the anisotropies such as magnetic uniaxial anisotropy, configurational anisotropy, etc. The inclusion of holes in a uniform magnetic film and the insertion of a uniform thin Ni layer, drastically affected the coercivity as compared with single Co anti-dot array, without severely affecting the saturation magnetization ($M_s$). The observed changes in the magnetic properties are closely related to the patterning that hinders the domain-wall motion as well as to the magneto-anisotropic bilayer structure.

  • PDF

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

The Effect of n-Alkanols on the Lateral Diffusion of Synaptosomal Plasma Membrane Vesicles Isolated from Bovine Cerebral Cortex (n-Alkanols가 소의 대뇌피질로부터 분리한 Synaptosomal Plasma Membrane Vesicles의 측방확산운동 범위와 속도에 미치는 영향)

  • Chung, In-Kyo;Kang, Jung-Sook;Yun, Il
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.157-163
    • /
    • 1993
  • Intramolecular excimer formation with the fluorescent probe 1,3-di(1-pyrenyl)propane (Py-3-Py) was used to investigate the effects of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol and 1-decanol on the lateral diffusion of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex (SPMV). The n-alkanols increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMV. In a dose-dependent manner, n-alkanols increased lateral diffusion of hydrocarbon region of bulk (inner+outer monolayers) SPMV lipid bilayers, and the potencies of n-alkanols up to l-nonanol increased with carbon chain length. It appears that the potencies in bilayer fluidization due to the lateral diffusion increase by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further increase in hydrocarbon length resulted in a decrease in pharmacological activity.

  • PDF

Structures of antimicrobial peptides HP (2-20) and interactions between HP(2-20) and membrain studied by NMR spectroscopy

  • Lee, Kwang-Hwan;Lee, Dong-Gun;Park, Yoonkyung;Hahm, Kyung-Soo;Kim, Yangmee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.68-68
    • /
    • 2003
  • HP(2-20) (AKKVFKRLEKLEKLFSKIQNDK) derived from the N-terminus of Helicobacter pylori Ribosomal Protein L1 shows potent antimicrobial activity against bacterial, fungi and cancer cells without cytotoxic effect. In order to investigate the relationships between antimicrobial activity and the structures, several analogues have been designed and synthesized. The structures of these peptides in SDS micelles have been investigated using NMR spectroscopy and they revealed that analogue 3 has the longest, well-defined alpha-helix from Val5 to Trp19. NOESY experiments performed on HP and its analogues in nondeuterated SDS micelles show that protons in the indole ring of Trp16 are in close contact with methylene protons of SDS micelles. In order to probe the position of HP and its analogues relative to the SDS micelles, spin-labeled stearate was added. Large effects are observed for the chemical shifts and the intensities of Phe5, Glu9, Phe12, and Trp16 within the helix region by 16-doxylstearate. This result implies that 16-doxylstearate is located in the center of the micelles and the hydrophobic phase of the amphiphilic ${\alpha}$-helix is located in contact with the acyl chains of the micelles. Also, Lys3 and Lys4 at N-terminus and Lys20 at C-terminus may produce an optimal arrangement for electrostatic interactions between the sulfate head groups of the SDS and the positively charged lysyl N$\sub$3/$\^$+/. Interactions between the indole ring of Trp and the membrane, as well as the amphiphilic ${\alpha}$-helical structure of HP induced by Trp at the C-terminus may allow HP to span the lipid bilayer. These structural features are crucial for their potent antibiotic activities.

  • PDF

Effects of Dopamine.HCI on Structural Parameters of Bovine Brain Membranes

  • Bae, Moon-Kyoung;Huh, Min-Hoi;Lee, Seung-Woo;Kang, Hyun-Gu;Pyun, Jae-Ho;Kwak, Myeong-Hee;Jang, Hye-Ock;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.653-661
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effect of dopamine$.$HCI on the structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and thickness of the lipid bilayer) of synaptosomal plasma membrane vesicles (SPMV), which were obtained from the bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophan of membrane pro-teins to Py-3-Py and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS) was also utilized. Dopamine$.$HCI increased both the bulk lateral mobility and annular lipid fluidity, and it had a greater fluidizing effect on the inner monolayer than on the outer monolayer. Furthermore, the drug had a clustering effect on membrane proteins.