The genes related to specific events or pathways in bacteria are frequently localized proximate to the genome of their neighbors, as with the structures known as operon, but eukaryotic genes seem to be independent of their neighbors, and are dispersed randomly throughout genomes. Although cases are rare, the findings from structures similar to prokaryotic operons in the nematode genome, and the clustering of housekeeping genes on human genome, lead us to assess the genomic association of genes as functional subunits. We evaluated the genomic association of neighboring genes on chromosomes 4 and 5 of Arabidopsis thaliana with and without respectively consideration of the scaffold/matrixattached regions (S/MAR) loci. The observed number of functionally identical bigrams and trig rams were significantly higher than expected, and these results were verified statistically by calculating p-values for weighted random distributions. The observed frequency of functionally identical big rams and trig rams were much higher in chromosome 4 than in chromosome 5, but the frequencies with, and without, consideration of the S/MAR in each chromosome were similar. In this study, a genomic association among functionally related neighboring genes in Arabidopsis thaliana was suggested.
Journal of Advanced Marine Engineering and Technology
/
제34권6호
/
pp.871-879
/
2010
본 논문은 뉴스 기사의 댓글에 대한 사용자의 감정을 분류하는 시스템을 제안한다. 제안된 시스템은 댓글의 문서 분류 시스템으로 기계학습에 기반을 두고 있다. 댓글은 일반적인 문서와 달리 본문을 가지고 있으며 본문의 내용이 독자의 감정에 영향을 줄 수 있다. 본 논문에서는 이와 같은 댓글의 특성과 여러 가지 자원을 이용하여 감정 분류를 위한 자질을 제안하고 이들의 가중치 설정 방법을 제안한다. 실험을 통해 이러한 가중치 설정 방법이 한글 뉴스의 댓글에 대한 감정을 분류하는데 효과적임을 알 수 있었다. 또한 댓글과 같이 많은 오류를 포함하는 문서에 대해서 문자 단위의 2음절과 3음절 자질도 충분히 이용 가치가 있음을 확인할 수 있었다. 향후에 뉴스 기사의 댓글뿐 아니라 상품 댓글 등 일반적인 감정 분석에 적용할 계획이다.
본 논문에서는 형태소를 인식 단위로 하는 한국어 연속음성 인식의 성능 개선을 위해 결합형태소를 자동으로 생성하는 방법을 제시한다. 학습코퍼스의 54%를 차지하고 오인식의 주요인이 되는 단음절 형태소를 감소시켜서 인식 성능을 높이는 것을 목적으로 한다. 품사의 접속 규칙을 이용한 기존의 지식기반의 형태소 결합방법은 접속 규칙의 생성이 어렵고, 학습 코퍼스에 나타난 출현 빈도를 반영하지 못하여 저빈도 결합형태소를 다수 생성하는 경향을 보였다. 본 논문에서 제시하는 방법은 학습데이터의 통계정보를 이용하여 결합형태소를 자동 생성한다. 결합할 형태소 쌍 선정을 위한 평가척도로는 형태소 쌍의 빈도, 상호정보, 유니그램 로그 유도값(unigram log likelihood)을 이용하였고 여기에 한국어의 특성 반영을 위해 단음절 형태소 제약과 형태소 결합길이를 제한하는 두개의 제약사항을 추가하였다. 학습에 사용된 텍스트 코퍼스는 방송뉴스와 신문으로 구성된 7백만 형태소이고, 최빈도 2만 형태소 다중 발음사전을 사용하였다. 세가지 평가척도 중 빈도를 이용한 것의 성능이 가장 좋았고 여기에 제약조건을 반영하여 성능을 더 개선할 수 있었다. 특히 최대 결합 길이를 3으로 할 때의 성능이 가장 우수하여 언어모델 혼잡도는 117.9에서 97.3으로 18%감소했으며, 형태소 에러율 (MER: Morpheme error rate)은 21.3%에서 17.6%로 감소하였다. 이때 단음절 형태소는 54%에서 30%로 24%가 감소하였다.
어떤 용어가 전문적인 개념을 많이 내포하고 있을 때 전문성이 높다고 말한다. 본 논문에서는 용어의 내부 구성정보와 외부 문맥정보를 이용하여 정보이론에 기반한 방법으로 전문용어가 내포하는 전문성을 정량적으로 계산하는 방법을 제안한다. 용어의 전문성은 용어간 상하위어 관계 설정에서 중요한 필요조건으로 사용될 수 있다. 제안한 방법은 전문용어의 내부 구성정보를 이용하는 방법, 문맥정보를 이용하는 방법 그리고 두 정보를 모두 이용하는 방법으로 나눈다. 구성정보를 이용하는 방법에서는 전문용어를 구성하는 단어의 빈도수, 가중치, 바이그램, 내부 수식구조 둥을 이용하고, 문맥정보를 이용하는 방법에서는 전문용어를 수식하는 단어들의 분포를 이용한다. 본 논문에서 제안한 방법은 분야에 독립적으로 적용될 수 있고, 전문용어 생성 절차에 대한 특정을 잘 반영할 수 있는 장점이 있다. MeSH 트리에 포함된 질병 이름의 전문성 값을 계산한 뒤 상위어의 전문성 값과 비교한 결과 82.0%의 정확률을 보였다.
본 논문에서는 형태소 unigram과 한국어 어절을 형성하는 형태소 범주 패턴에 기반하여 어절을 인식하는 한국어 띄어쓰기 시스템을 구현하였다. 기존에 많이 연구된 통계 정보를 이용한 띄어쓰기 모델은 비교적 짧은 시간에 쉽게 구현할 수 있는 장점이 있지만, 한국어의 형태 유형론적 특성 때문에 발생하는 (ㄱ) 자료부족 문제와 (ㄴ) 메모리 크기 문제에 효과적으로 대처하지 못한다. 본 논문은 이 두 문제를 동시에 해결하기 위해 어절을 구성하고 있는 개별 형태소의 통계 정보와 그 형태소의 범주의 통계 정보를 기반으로 하여 띄어쓰기 후보 어절들을 추천한다. 임의의 후보 어절이 최종의 띄어쓰기 단위인 어절이 될 수 있는 확률은 (ㄱ) 해당 후보 어절 내의 각 형태소 확률과 (ㄴ) 해당 후보 어절을 구성하기 위해 그 형태소의 범주가 다른 형태소 범주와 함께 형성하는 패턴 내에서 차지하는 '범주가중치'를 고려하여 구한다. 해당 '범주가중치'는 (ㄱ) 말뭉치로부터 실제로 관찰된 어절의 확률과 (ㄴ) 후보 어절 내의 개별 형태소의 확률과 (ㄷ) 그 범주 가중치에 의해 추정된 어절 확률 사이의 평균 에러(error mean)가 최저가 되는 방향으로 학습하여 얻어진다.
스마트폰과 태블릿PC 등 터치스크린을 활용한 휴대기기의 사용이 늘어나면서 데스크탑 컴퓨터나 노트북으로 수행하던 작업을 스마트폰과 태블릿PC를 이용하여 수행하는 일이 많아졌다. 그런데 휴대성을 갖춰야하는 스마트기기의 특성상, 쿼티 자판은 작은 화면 안에 조밀하게 배치된다. 그리고 이러한 점은 기계식 쿼티 자판을 사용할 때와는 다른 양상의 오타가 발생하는 원인으로 작용한다. 각 버튼이 차지하는 공간이 충분했던 기계식 쿼티 자판과 달리, 터치스크린에서의 쿼티 자판은 각 버튼에 할당되는 영역이 작아 사용자가 누르려고 의도했던 버튼이 아닌 주변의 버튼이 입력되는 경우가 자주 발생하게 된다. 본 논문에서는 어절 유니그램과 바이그램 확률을 이용한 n-gram 언어 모델 방법으로 터치스크린 환경에서 쿼티 자판으로 입력되는 문자 입력 오류를 자동으로 교정하는 방법을 제안하였다.
본 연구는 토픽 모델링 및 네트워크 분석 기법을 활용하여 여대생들의 웨어러블 디바이스에 대한 인식 및 선호도 분석, 건강관리에 대한 요구를 분석함으로써 여대생에게 맞는 웨어러블 디바이스 개발 방안을 제시하였다. 이를 위하여 S여자대학교 재학생들이 사용하는 커뮤니티에서 건강관리 및 웨어러블 디바이스와 관련된 게시글 2,457건을 수집하였고. 수집된 게시글과 댓글 데이터를 전처리한 뒤 LDA 기반의 토픽 모델링을 실시하였다. 토픽 모델링 기법을 통해 건강관리 및 웨어러블 디바이스와 관련하여 여대생들의 주요 쟁점들을 도출하고, 관련 키워드가 포함된 포스팅에 대해 바이그램 분석과 네트워크 분석을 수행하여 여대생들이 웨어러블 기기에 대해 가지고 있는 견해를 파악하고자 한다.
농업의 고질적인 인력 부족과 고령화 문제를 해결하는 방안 중 스마트 팜은 크게 주목받고 있다. 6차 산업혁명이라고 불리는 스마트 팜 산업은 경쟁력의 강화가 필요하다. 혁신 가능한 IT 기술을 농업에 접목하기 위해 선행적인 연구나 특허에 대한 정보 수집 및 분석은 중요하다. 본 논문은 국내 특허정보검색서비스(KIPRIS)를 이용하여 스마트 팜에 관련된 5,789건의 특허데이터를 통해 스마트 팜 특허 동향을 살펴본다. 키워드 네트워크, 에고 네트워크, 동시 출현 네트워크, 바이그램 네트워크 분석 등을 통해 스마트 팜 정보의 국내 특허 동향을 알아본다. 스마트 팜 특허 관련 네트워크 분석 결과, 스마트 팜 시스템을 이용하거나 시스템 제어 기술과 관련된 특허가 가장 많았다. 본 논문은 향후 스마트 팜 관련 특허 연구 방향 설정에 있어 도움을 제공할 수 있다.
본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.
이 연구는 경관 인식 모델의 세 가지 요소(활동, 물리적 환경, 이용자)를 기본으로 하는 스몰데이터인 설문조사와 빅데이터인 소셜미디어 분석을 통해 문화가 다른 두 지역(미국, 한국)의 선형 공원 두 곳을 분석하고자 한다. 소셜 미디어의 사용이 증가하고 경관을 보는 새로운 매체로 부상했음에도 불구하고, 현재 소셜 미디어를 활용한 공원 연구는 제한적이다. 이에 본 연구는 소셜 미디어 분석과 설문 조사를 동시에 활용해서 비교함으로써 설문 조사가 갖는 한계를 보완함과 동시에 소셜 미디어 분석의 제한점을 보완하고자 한다. 미국 시카고의 606 트레일와 한국 서울의 경춘선 숲길은 버려진 길에 조성된 공원이다. 이 두 곳을 대상으로 총 505부의 설문조사를 시행했고, 그 결과는 통계 분석, 주성분 분석, 회귀 분석을 활용해서 분석하였다. 또한 각 선형 공원을 언급한 트위터를 총 20,000건 이상 수집했다. 이 트위터를 대상으로 군집 분석, 바이그램 네트워크 분석 등을 통해 각 공원이 갖는 장소적 특성 및 물리적 환경을 분석했다. 연구 결과는 공원 디자인이 다양해질수록 행동은 단순화 된다는 것을 발견할 수 있었다. 공원 이용자들의 절반은 선형 공원을 최종 목적지까지 도달하는 지름길로 이용했고, 공원의 특징에 따라 다양한 활동과 혜택을 확인할 수 있었다. 소셜 미디어 분석 결과, 606트레일은 경춘선 숲길 보다 주민들과 더욱 밀접한 관계를 갖고 있다는 것을 확인했다. 또한 경춘선은 606트레일보다 공원 내 이벤트와 연관이 깊음을 발견할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.