본 논문에서는 모바일 폰에서 오프라인 필기체 과분할 인식의 후처리 방법에 관하여 논하였다. 제안된 방법은 조합 행렬 생성, 문자 조합 필터링, 문자 유사도 측정으로 구성된다. 조합 행렬 생성 과정은 각각의 조각의 인식 결과로부터 생성가능한 모든 조합 행렬을 계산하는 부분이며 조합 행렬을 그래프로 구성하게 된다. 문자 조합 필터링 과정은 그래프의 노드들과 단어 사전을 비교하여 불필요한 노드를 삭제하는 과정이며 문자 유사도 측정과정은 단어 사전의 각각의 단어들과 Levenshtein 거리(distance)를 계산하여 최적의 후처리 결과를 추출하게 된다. 제안된 방법의 인식률은 85.8%의 정확도를 보였다.
We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.
Purpose: This study aims to examine how to review contents of experiential and utilitarian products (e.g., skincare products) and how to affect review helpfulness by applying natural language processing techniques. Research design, data, and methodology: This study uses 69,633 online reviews generated for the products registered at Amazon.com by 13 Korean cosmetic firms. The authors identify key topics that emerge about consumers' use of skincare products such as skin type and skin trouble, by applying bigram analysis. The review content variables are included in the review helpfulness model, including other important determinants. Results: The estimation results support the positive effect of review extremity and content on the helpfulness. In particular, the reviewer's skin type information was recognized as highly useful when presented together as a basis for high-rated reviews. Moreover, the content related to skin issues positively affects review helpfulness. Conclusions: The positive relationship between extreme reviews and helpfulness of reviews challenges the findings from prior literature. This result implies that an in-depth study of the effect of product types on review helpfulness is needed. Furthermore, a positive effect of review content on helpfulness suggests that applying big data analytics can provide meaningful customer insights in the online retail industry.
Objectives : We would like to study what is the most appropriate "feature" to effectively perform authorship attribution of the text of Traditional East Asian Medicine Methods : The authorship attribution performance of the Support Vector Machine (SVM) was compared by cross validation, depending on whether the function words or content words, single word or collocations, and IDF weights were applied or not, using 'Variorum of the Nanjing' as an experimental Corpus. Results : When using the combination of 'function words/uni-bigram/TF', the performance was best with accuracy of 0.732, and the combination of 'content words/unigram/TFIDF' showed the lowest accuracy of 0.351. Conclusions : This shows the following facts from the authorship attribution of the text of East Asian traditional medicine. First, function words play an important role in comparison to content words. Second, collocations was relatively important in content words, but single words have more important meanings in function words. Third, unlike general text analysis, IDF weighting resulted in worse performance.
Journal of Information Technology Applications and Management
/
제12권2호
/
pp.15-27
/
2005
Text categorization systems generally use single words (unigrams) as features. A deceptively simple algorithm for improving text categorization is investigated here, an idea previously shown not to work. It is to identify useful word pairs (bigrams) made up of adjacent unigrams. The bigrams it found, while small in numbers, can substantially raise the quality of feature sets. The algorithm was tested on two pre-classified datasets, Reuters-21578 for English and Korea-web for Korean. The results show that the algorithm was successful in extracting high quality bigrams and increased the quality of overall features. To find out the role of bigrams, we trained the Na$\"{i}$ve Bayes classifiers using both unigrams and bigrams as features. The results show that recall values were higher than those of unigrams alone. Break-even points and F1 values improved in most documents, especially when documents were classified along the large classes. In Reuters-21578 break-even points increased by 2.1%, with the highest at 18.8%, and F1 improved by 1.5%, with the highest at 3.2%. In Korea-web break-even points increased by 1.0%, with the highest at 4.5%, and F1 improved by 0.4%, with the highest at 4.2%. We can conclude that text classification using unigrams and bigrams together is more efficient than using only unigrams.
기존의 복합명사 분해 알고리즘은 미등록어 단위명사들이 포함된 복합명사를 분해할 때 미등록어를 분리하기 어려운 문제가 발생한다. 이는 현실적으로 모든 고유명사, 신조어, 외래어 등의 모든 단위 명사를 사전에 등록하는 것은 불가능하다는 한계가 존재하기 때문이다. 이 문제를 해결하기 위하여 복합명사 분해 문제를 태그 열 부착(sequence labeling) 문제로 정의하고 음절 단위 임베딩과 딥러닝 기법을 이용하는 복합명사 분해 방법을 제안한다. 단위명사 사전을 구축하지 않고 미등록 단위명사를 인식하기 위하여 복합명사를 구성하는 각 음절들을 연속적인 벡터 공간에 표현하여 LSTM과 선형체인(linear-chain) CRF를 이용하는 방식으로 복합명사를 단위명사들로 분해한다.
본 논문에서는 메모리 제약적인 기기에 적합한 한국어 띄어쓰기 시스템을 제안한다. 본 연구에서는 최신 선행 연구들에 비해 성능의 저하가 없게 하면서 동시에 메모리 사용량을 탁월하게 줄이는 데에 초점을 맞추었다. 규칙 정보는 전혀 사용하지 않고, 은닉 마르코프 모델(Hidden Markov Model)의 이론에 근거하여 확률 정보를 적용하였으며, 두 가지의 자질을 사용하는데, 1) 첫 번째 자질은 각 음절이 개별적으로 가지는 띄어쓰기 패턴 자질이며, 2) 두 번째 자질은 두 음절 패턴 자질 사이의 전이 확률 값 정보이다. 실험 결과에서, 첫 번째 자질만 사용한 경우 모바일에 적용하기 위해 제안된 다른 연구보다 약 53% 정도 적게 메모리를 사용하면서 약 91% 정도의 정밀도를 보였다. 두 가지 자질을 모두 사용한 경우 음절바이그램을 사용한 다른 연구와 비교하여 약 76% 정도 메모리를 적게 사용하면서 약 94%가 넘는 우수한 성능을 나타내었다.
본 논문에서는 한국어 의존 구문 분석을 위한 새로운 확률 모델을 제안한다. 한국어가 자유 어순 언어라 할지라도 지역적 어순은 존재하기 때문에 의존관계를 결정하기 위해 의존하는 두 어절인 의존소와 지배소 사이의 수식 거리가 유용하다는 것은 이미 많은 연구를 통해 밝혀졌다. 본 연구에서는 수식거리의 정확한 수식 거리의 추정을 위해 지배가능 경로 문맥을 이용한 수식 거리 확률 모델을 제안한다. 수식 거리를 위해 지배가능 경로를 고려함으로써, 긴 표층 문맥을 압축하는 효과를 가져다 준다. 이를 통해 구문 분석 정확률 향상과 원거리 의존 관계 향상을 보임을 설명한다. 실험 및 평가를 통해 제안하는 모델의 구문 분석 성능은 86.9%이며, 기존에 제안된 구문 분석 모델과 비교하여 높은 구문 분석 결과를 보이며, 특히 원거리 의존관계에 대하여 더욱 향상된 성능을 보인다.
본 논문은 통계 기반 한국어 화행분류를 위하여 필요한 각 자질이 분류 성능에 미치는 영향과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 지지벡터기계 학습 방법을 이용하여 구현한 화행 분류시스템을 통해 실험한 결과, n-gram 자질 중 품사 바이그램은 유용하지 않으며 형태소-품사 쌍과 다른 자질들을 결합했을 때 성능이 향상됨을 알 수 있었다. 또한, 자질 선택 기법을 사용한 자질 비율에 따른 실험을 통해서 매우 적은 자질만으로도 화행 분류에 있어 어느 정도 안정된 성능을 낼 수 있었다. 아울러, 실험 결과의 분석을 통해 한국어에서 마지막 어절이 문장 전체의 화행분류에 중요한 역할을 하며, 한국어의 특징인 자유 어순이나 주어의 빈번한 생략 등이 화행 분류 실험의 성능에 영향을 미친다는 사실도 알 수 있었다.
본 논문에서는 통계기반의 복합명사 분해 방법과 어휘의미망(U-WIN)과 사전 뜻풀이에서 추출한 의미관계 정보를 이용하는 한국어 복합명사 의미 태깅 시스템을 제안한다. 본 시스템은 크게 복합명사 분해, 의미제약, 그리고 의미 태깅의 세 가지 부분으로 이루어진다. 분해과정은 세종말뭉치에서 추출한 위치별명사 빈도를 사용하여 최적의 구성 명사 분해 후보를 선정하고 의미제약을 위한 구성 명사 재분해와 외래어 복원의 과정을 수행한다. 의미범위 제약과정은 유사도 비교의 계산량을 줄이고 정확도를 높이기 위해 원어 정보와 Naive Bayes Classifier를 이용해 가능한 경우 구성 명사의 의미를 선 제약한다. 의미 분석 및 태깅 과정에서는 bigram 구성 명사의 각 의미 유사도를 구하고 하나의 체인을 만들어가며 태깅을 수행한다. 본 시스템의 성능 평가를 위해 표준국어대사전에서 추출한 3음절 이상의 40,717개의 복합명사를 대상으로 의미 태깅된 테스트 셋을 구축하였다. 이를 이용한 실험에서 99.26%의 분해 정확도를 보였으며, 95.38%의 의미 분석 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.