• Title/Summary/Keyword: big6모형

Search Result 81, Processing Time 0.023 seconds

A Study on Shipments of Swimming Crab Using Negative Binomial Regression Model (음이항회귀모형을 이용한 꽃게 출하량에 관한 연구)

  • Nam, Yeongeun;Seo, Jihyun;Choi, Gayeong;Lee, Kyeongjun
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2941-2951
    • /
    • 2018
  • The purpose of this paper is to analyse the effect of ocean weather factors on shipments of swimming crab. We use the data of data portal and ocean weather factors (mean wind velocity, mean atmospheric pressure, mean relative humidity, mean air temperature, mean water temperature, mean maximum wave height, mean significant wave height, maximum significant wave height, maximum wave height, mean wave period, maximum wave period). We did statistical analysis using Poisson regression analysis and negative binomial regression analysis. As the result of study, important factors influential in the shipments of swimming crab turn out to be mean wind velocity, mean atmospheric pressure, mean relative humidity, mean water temperature, maximum wave height, mean wave period and maximum wave period. the shipments of swimming crab increases as mean wind velocity, mean atmospheric pressure, mean relative humidity, mean water temperature increases or mean wave period increase. However, as maximum wave height, maximum wave period decreases, the shipment of swimming crab increases.

Study on prediction for a film success using text mining (텍스트 마이닝을 활용한 영화흥행 예측 연구)

  • Lee, Sanghun;Cho, Jangsik;Kang, Changwan;Choi, Seungbae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1259-1269
    • /
    • 2015
  • Recently, big data is positioning as a keyword in the academic circles. And usefulness of big data is carried into government, a local public body and enterprise as well as academic circles. Also they are endeavoring to obtain useful information in big data. This research mainly deals with analyses of box office success or failure of films using text mining. For data, it used a portal site 'D' and film review data, grade point average and the number of screens gained from the Korean Film Commission. The purpose of this paper is to propose a model to predict whether a film is success or not using these data. As a result of analysis, the correct classification rate by the prediction model method proposed in this paper is obtained 95.74%.

Establishment of ITS Policy Issues Investigation Method in the Road Section applied Textmining (텍스트마이닝을 활용한 도로분야 ITS 정책이슈 탐색기법 정립)

  • Oh, Chang-Seok;Lee, Yong-taeck;Ko, Minsu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.10-23
    • /
    • 2016
  • With requiring circumspections using big data, this study attempts to develop and apply the search method for audit issues relating to the ITS policy or program. For the foregoing, the auditing process of the board of audit and inspection was converged with the theoretical frame of boundary analysis proposed by William Dunn as an analysis tool for audit issues. Moreover, we apply the text mining technique in order to computerize the analysis tool, which is similar to the boundary analysis in the concept of approaching meta-problems. For the text mining analysis, specific model we applied the antisymmetry-symmetry compound lexeme-based LDA model based on the Latent Dirichlet Allocation(LDA) methodologies proposed by David Blei. The several prime issues were founded through a case analysis as follows: lack of collection of traffic information by the urban traffic information system, which is operated by the National Police Agency, the overlapping problems between the Ministry of Land, Infrastructure and Transport and the Advanced Traffic Management System and fabrication of the mileage on digital tachograph.

A Study On The Economic Value Of Firm's Big Data Technologies Introduction Using Real Option Approach - Based On YUYU Pharmaceuticals Case - (실물옵션 기법을 이용한 기업의 빅데이터 기술 도입의 경제적 가치 분석 - 유유제약 사례를 중심으로 -)

  • Jang, Hyuk Soo;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.15-26
    • /
    • 2014
  • This study focus on a economic value of the Big Data technologies by real options model using big data technology company's stock price to determine the price of the economic value of incremental assessed value. For estimating stochastic process of company's stock price by big data technology to extract the incremental shares, Generalized Moments Method (GMM) are used. Option value for Black-Scholes partial differential equation was derived, in which finite difference numerical methods to obtain the Big Data technology was introduced to estimate the economic value. As a result, a option value of big data technology investment is 38.5 billion under assumption which investment cost is 50 million won and time value is a about 1 million, respectively. Thus, introduction of big data technology to create a substantial effect on corporate profits, is valuable and there are an effects on the additional time value. Sensitivity analysis of lower underlying asset value appear decreased options value and the lower investment cost showed increased options value. A volatility are not sensitive on the option value due to the big data technological characteristics which are low stock volatility and introduction periods.

A Study of improving reliability on prediction model by analyzing method Big data (빅데이터 분석방법을 이용한 예측모형의 신뢰도 향상에 관한 연구)

  • Song, Min-Gu;Kim, Sun-Bae
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.103-112
    • /
    • 2013
  • Traditional method of establishing prediction model is usually using formal data stored in Data Base. However, nowadays advent of "smart" era brought by ground-breaking development of communication system makes informal data to dominate overall data, such 80% in total. Therefore, conventional method using formal data as establishing predicting model would be untrustworthy means in present. In other words, it is indispensible to make prediction model credible including informal data(SNS, image, video) and semi-formal data(log data). In this study, we increase credibility of predicting model adapting Bigdata method and comparing reliability of conventional measurement to real-data.

Analyzing Factors of Success of Film Using Big Data : Focusing on the SNS Utilization Index and Topic Keywords of the Film (빅데이터를 활용한 영화흥행 요인 분석: 영화 <기생충>의 SNS 활용지수와 토픽키워드 중심으로)

  • Kim, Jin-Wook
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • In the rapidly changing era of the fourth industry, big data is being used in various fields. In recent years, the use of big data has been rapidly applied to overall cultural and artistic contents, and among them, the use of big data is essential as a film genre with a lot of capital. This research method is analyzed as the film , which won the Palme d'Or Prize of the 72nd Cannes Film Festival in 2019 and the works and directors' award at the Academy Awards. The analyzed value predicts the film's performance through opinion mining, which gives the value of the change and sensitivity of each data cycle, and extracts the utilization index and topic keywords of SNS such as Facebook and Twitter to reflect the audience's interest. Identify the factors. As such, if model performance and model development can be predicted through model analysis of film performance using big data, the efficiency of the film production process will be maximized while the risk of production cost and the risk of film failure will be minimized.

A Prediction System for Server Performance Management (서버 성능 관리를 위한 장애 예측 시스템)

  • Lim, Bock-Chool;Kim, Soon-Gohn
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.684-690
    • /
    • 2018
  • In society of the big data is being recognized as one of the core technologies witch is analysis of the collected information, the intelligent evolution of society seems to be more oriented society through an optimized value creation based on a prediction technique. If we take advantage of technologies based on big data about various data and a large amount of data generated during system operation, it will be possible to support stable operation and prevention of faults and failures. In this paper, we suggested an environment using the collection and analysis of big data, and proposed an derive time series prediction model for predicting failure through server performance monitoring for data collected and analyzed. It can be capable of supporting stable operation of the IT systems through failure prediction model for the server operator.

A Study on Impact of Curriculum based Information Literacy on Problem Solving Ability in Elementary School (정보소양 통합교육이 초등학생의 문제해결력에 미치는 영향에 관한 연구)

  • 민혜령
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.233-238
    • /
    • 2001
  • 정보시대의 학습자는 다양한 문제상황을 능동적이고 자주적으로 해결할 수 있는 능력을 갖추어야 한다. 본 연구는 정보소양 통합교육이 학습자의 문제해결력에 미치는 영향을 경험적으로 검증하기 위해서, “The Big6”모형을 기본틀로 하여 초등학교 사회교과목에 대한 실제 교수-학습안을 구안하여 이를 통해 수업을 실시한 후 실험집단과 통제집단 간 문제해결력의 차이를 비교한다.

  • PDF

A Survey Research on Information Literacy in Public Librarian (공공도서관 사서의 정보활용능력 수준에 대한 실태조사)

  • Shin, Jeonga-A;Nam, Young-Joon
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2014.08a
    • /
    • pp.237-242
    • /
    • 2014
  • 이 연구는 공공도서관 사서의 정보활용능력 수준에 대한 자기인식과 실제 평가를 통해 Big6모형을 기반으로 하여 공공도서관 사서의 정보활용능력 수준실태를 78명의 사서를 대상으로 실험하였다. 연구 결과, 정보요구 영역은 높게, 정보평가 영역에 대해서는 다른 영역보다 낮게 나타났지만 모든 영역에 대해서 평균이상으로 조사되어 사서들의 정보활용교육 필요성을 파악할 수 있었다. 특히 정보활용교육 경험여부에 대한 두 집단간의 차이는 정보이용 영역을 제외하고는 통계적으로 유의미하지 않음을 알 수 있었다.

  • PDF

Marginal Propensity to Consume with Economic Shocks - FIML Markov-Switching Model Analysis (경제충격 시기의 한계소비성향 분석 - FIML 마코프-스위칭 모형 이용)

  • Yoon, Jae-Ho;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6565-6575
    • /
    • 2014
  • Hamilton's Markov-switching model [5] was extended to the simultaneous equations model. A framework for an instrumental variable interpretation of full information maximum likelihood (FIML) by Hausman [4] can be used to deal with the problem of simultaneous equations based on the Hamilton filter [5]. A comparison of the proposed FIML Markov-switching model with the LIML Markov-switching models [1,2,3] revealed the LIML Markov-switching models to be a special case of the proposed FIML Markov-switching model, where all but the first equation were just identified. Moreover, the proposed Markov-switching model is a general form in simultaneous equations and covers a broad class of models that could not be handled previously. Excess sensitivity of marginal propensity to consume with big shocks, such as housing bubble bursts in 2008, can be determined by applying the proposed model to Campbell and Mankiw's consumption function [6], and allowing for the possibility of structural breaks in the sensitivity of consumption growth to income growth.