• Title/Summary/Keyword: big data value

Search Result 579, Processing Time 0.027 seconds

Correspondence Strategy for Big Data's New Customer Value and Creation of Business (빅 데이터의 새로운 고객 가치와 비즈니스 창출을 위한 대응 전략)

  • Koh, Joon-Cheol;Lee, Hae-Uk;Jeong, Jee-Youn;Kim, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.229-238
    • /
    • 2012
  • Within last 10 years, internet has become a daily activity, and humankind had to face the Data Deluge, a dramatic increase of digital data (Economist 2012). Due to exponential increase in amount of digital data, large scale data has become a big issue and hence the term 'big data' appeared. There is no official agreement in quantitative and detailed definition of the 'big data', but the meaning is expanding to its value and efficacy. Big data not only has the standardized personal information (internal) like customer information, but also has complex data of external, atypical, social, and real time data. Big data's technology has the concept that covers wide range technology, including 'data achievement, save/manage, analysis, and application'. To define the connected technology of 'big data', there are Big Table, Cassandra, Hadoop, MapReduce, Hbase, and NoSQL, and for the sub-techniques, Text Mining, Opinion Mining, Social Network Analysis, Cluster Analysis are gaining attention. The three features that 'bid data' needs to have is about creating large amounts of individual elements (high-resolution) to variety of high-frequency data. Big data has three defining features of volume, variety, and velocity, which is called the '3V'. There is increase in complexity as the 4th feature, and as all 4features are satisfied, it becomes more suitable to a 'big data'. In this study, we have looked at various reasons why companies need to impose 'big data', ways of application, and advanced cases of domestic and foreign applications. To correspond effectively to 'big data' revolution, paradigm shift in areas of data production, distribution, and consumption is needed, and insight of unfolding and preparing future business by considering the unpredictable market of technology, industry environment, and flow of social demand is desperately needed.

Value Model for Applications of Big Data Analytics in Logistics (물류에서 빅데이터 분석의 활용을 위한 가치 모델)

  • Kim, Seung-Wook
    • Journal of Digital Convergence
    • /
    • v.15 no.9
    • /
    • pp.167-178
    • /
    • 2017
  • Big Data is a key asset for the company and a key factor in boosting its competitiveness in the logistics sector. However, there is still a lack of research on how to collect, analyze and utilize Big Data in logistics. In this context, this study has developed a value model applicable to logistics companies based on the results of analysis and application of Big Data in the logistics of previous studies and DHL. The purpose of this study is to improve the operational efficiency and customer experience maximization level of logistics companies through utilization of big data analysis in logistics, to improve competitiveness of big data utilization and to develop new business opportunities. This study has a significance to newly create a value model for utilization of big data analysis in logistics sector and can provide implications for other industries as well as logistics sector in the future.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

The Analyzing Risk Factor of Big Data : Big Data Processing Perspective (빅데이터 처리 프로세스에 따른 빅데이터 위험요인 분석)

  • Lee, Ji-Eun;Kim, Chang-Jae;Lee, Nam-Yong
    • Journal of Information Technology Services
    • /
    • v.13 no.2
    • /
    • pp.185-194
    • /
    • 2014
  • Recently, as value for practical use of big data is evaluated, companies and organizations that create benefit and profit are gradually increasing with application of big data. But specifical and theoretical study about possible risk factors as introduction of big data is not being conducted. Accordingly, the study extracts the possible risk factors as introduction of big data based on literature reviews and classifies according to big data processing, data collection, data storage, data analysis, analysis data visualization and application. Also, the risk factors have order of priority according to the degree of risk from the survey of experts. This study will make a chance that can avoid risks by bid data processing and preparation for risks in order of dangerous grades of risk.

A Review on the Management of Water Resources Information based on Big Data and Cloud Computing (빅 데이터와 클라우드 컴퓨팅 기반의 수자원 정보 관리 방안에 관한 검토)

  • Kim, Yonsoo;Kang, Narae;Jung, Jaewon;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.100-112
    • /
    • 2016
  • In recent, the direction of water resources policy is changing from the typical plan for water use and flood control to the sustainable water resources management to improve the quality of life. This change makes the information related to water resources such as data collection, management, and supply is becoming an important concern for decision making of water resources policy. We had analyzed the structured data according to the purpose of providing information on water resources. However, the recent trend is big data and cloud computing which can create new values by linking unstructured data with structured data. Therefore, the trend for the management of water resources information is also changing. According to the paradigm change of information management, this study tried to suggest an application of big data and cloud computing in water resources field for efficient management and use of water. We examined the current state and direction of policy related to water resources information in Korea and an other country. Then we connected volume, velocity and variety which are the three basic components of big data with veracity and value which are additionally mentioned recently. And we discussed the rapid and flexible countermeasures about changes of consumer and increasing big data related to water resources via cloud computing. In the future, the management of water resources information should go to the direction which can enhance the value(Value) of water resources information by big data and cloud computing based on the amount of data(Volume), the speed of data processing(Velocity), the number of types of data(Variety). Also it should enhance the value(Value) of water resources information by the fusion of water and other areas and by the production of accurate information(Veracity) required for water management and prevention of disaster and for protection of life and property.

Marketing Performance and Big Data Use During the COVID-19 Pandemic: A Case Study of SMEs in Indonesia

  • WIBOWO, Sampurno;SURYANA, Yuyus;SARI, Diana;KALTUM, Umi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.7
    • /
    • pp.571-578
    • /
    • 2021
  • The outbreak of the COVID-19 pandemic, which began in 2020, had a significant impact on the economy and business activities worldwide. Large companies, as well as small businesses were affected, many of them had to scale down or divert their businesses, and some even had to stop. This extraordinary situation requires business people to make innovations and adjustments to survive during a pandemic. Entering the digital era, business players are helped by the ease of internet access, which will make it easier for SME players to get data from their consumers. Business actors can use this data to innovate and create new creations to improve business performance during this pandemic. This research aims to identify how small and medium enterprises can take advantage of Big Data to improve marketing performance through innovation and value creation. The research methodology used the in this research is quantitative method. The respondents are SME producers of food and beverage, with a total of 150 respondents. The results in the study indicate that all the proposed hypotheses are accepted. The most significant influence is found on the relationship of Big Data to value creation. The lowest effect was obtained from the relationship between Big Data and marketing performance through the mediation variable and innovation capability.

Information Visualization Process for Spatial Big Data (공간빅데이터를 위한 정보 시각화 방법)

  • Seo, Yang Mo;Kim, Won Kyun
    • Spatial Information Research
    • /
    • v.23 no.6
    • /
    • pp.109-116
    • /
    • 2015
  • In this study, define the concept of spatial big data and special feature of spatial big data, examine information visualization methodology for increase the insight into the data. Also presented problems and solutions in the visualization process. Spatial big data is defined as a result of quantitative expansion from spatial information and qualitative expansion from big data. Characteristics of spatial big data id defined as 6V (Volume, Variety, Velocity, Value, Veracity, Visualization), As the utilization and service aspects of spatial big data at issue, visualization of spatial big data has received attention for provide insight into the spatial big data to improve the data value. Methods of information visualization is organized in a variety of ways through Matthias, Ben, information design textbook, etc, but visualization of the spatial big data will go through the process of organizing data in the target because of the vast amounts of raw data, need to extract information from data for want delivered to user. The extracted information is used efficient visual representation of the characteristic, The large amounts of data representing visually can not provide accurate information to user, need to data reduction methods such as filtering, sampling, data binning, clustering.

Big Data, Business Analytics, and IoT: The Opportunities and Challenges for Business (빅데이터, 비즈니스 애널리틱스, IoT: 경영의 새로운 도전과 기회)

  • Jang, Young Jae
    • The Journal of Information Systems
    • /
    • v.24 no.4
    • /
    • pp.139-152
    • /
    • 2015
  • With the advancement of the Internet/IT technologies and the increased computation power, massive data can be collected, stored, and processed these days. The availability of large databases has brought forth a new era in which companies are hard pressed to find innovative ways to utilize immense amounts of data at their disposal. Indeed, data has opened a new age of business operations and management. There are already many cases of innovative businesses reaping success thanks to scientific decisions based on data analysis and mathematical algorithms. Big Data is a new paradigm in itself. In this article, Big Data is viewed as a new perspective rather than a new technology. This value centric definition of Big Data provides a new insight and opportunities. Moreover, the Business Analytics, which is the framework of creating tangible results in management, is introduced. Then the Internet of Things (IoT), another innovative concept of data collection and networking, is presented and how this new concept can be interpreted with Big Data in terms of the value centric perspective. The challenges and opportunities with these new concepts are also discussed.

An Analysis of Big Data Structure Based on the Ecological Perspective (생태계 관점에서의 빅데이터 활성화를 위한 구조 연구)

  • Cho, Jiyeon;Kim, Taisiya;Park, Keon Chul;Lee, Bong Gyou
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.277-294
    • /
    • 2012
  • The purpose of this research is to analyze big data structure and various objects in big data industry based on ecological perspective. Big data is rapidly emerging as a highly valuable resource to secure competitiveness of enterprise and government. Accordingly, the main issues in big data are to find ways of creating economic value and solving various problems. However big data is not systematically organized, and hard to utilize as it constantly expands to related industry such as telecommunications, finance and manufacturing. Under this circumstance, it is crucial to understand range of big data industry and to which stakeholders are related. The ecological approach is useful to understand comprehensive industry structure. Therefore this study aims at confirming big data structure and finding issues from interaction among objects. Results of this study show main framework of big data ecosystem including relationship among object elements composing of the ecosystem. This study has significance as an initial study on big data ecosystem. The results of the study can be useful guidelines to the government for making systemized big data ecosystem and the entrepreneur who is considering launching big data business.

Study for Spatial Big Data Concept and System Building (공간빅데이터 개념 및 체계 구축방안 연구)

  • Ahn, Jong Wook;Yi, Mi Sook;Shin, Dong Bin
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.43-51
    • /
    • 2013
  • In this study, the concept of spatial big data and effective ways to build a spatial big data system are presented. Big Data is defined as 3V(volume, variety, velocity). Spatial big data is the basis for evolution from 3V's big data to 6V's big data(volume, variety, velocity, value, veracity, visualization). In order to build an effective spatial big data, spatial big data system building should be promoted. In addition, spatial big data system should be performed a national spatial information base, convergence platform, service providers, and providers as a factor of production. The spatial big data system is made up of infrastructure(hardware), technology (software), spatial big data(data), human resources, law etc. The goals for the spatial big data system build are spatial-based policy support, spatial big data platform based industries enable, spatial big data fusion-based composition, spatial active in social issues. Strategies for achieving the objectives are build the government-wide cooperation, new industry creation and activation, and spatial big data platform built, technologies competitiveness of spatial big data.