• Title/Summary/Keyword: big data privacy

Search Result 126, Processing Time 0.021 seconds

Strengthening Big Data Privacy through homomorphic encryption (동형암호화를 통한 빅데이터 privacy 강화 방안)

  • Oh, Minseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.139-141
    • /
    • 2018
  • 최근 IoT, SNS 등이 확대 되면서 대규모의 빅데이터가 생산되고 있고, 이러한 빅데이터는 AI 등 지능형 기술과 결합하여 다양한 분야의 예측과 의사결정을 지원하며 새로운 가치를 창출하고 있다. 그러나, 이러한 활용에 있어 가장 걸림돌이 되는 것은 빅데이터에 내제되어 있는 개인정보에 대한 위협이다. 본연구에서는 빅데이터에 내제되어 있는 개인정보를 보호하면서도 빅데이터의 효과적인 분석과 활용을 가능하게 할 수 있는 동형암호(homomorphic encryption)을 살펴보고 빅데이터의 프라이버시 강화 방안과 이를 통한 빅데이터의 활용방안에 대해 연구하고 향 후 과제 등에 대해 고찰해 보도록 한다.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

Safety Verification Techniques of Privacy Policy Using GPT (GPT를 활용한 개인정보 처리방침 안전성 검증 기법)

  • Hye-Yeon Shim;MinSeo Kweun;DaYoung Yoon;JiYoung Seo;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • As big data was built due to the 4th Industrial Revolution, personalized services increased rapidly. As a result, the amount of personal information collected from online services has increased, and concerns about users' personal information leakage and privacy infringement have increased. Online service providers provide privacy policies to address concerns about privacy infringement of users, but privacy policies are often misused due to the long and complex problem that it is difficult for users to directly identify risk items. Therefore, there is a need for a method that can automatically check whether the privacy policy is safe. However, the safety verification technique of the conventional blacklist and machine learning-based privacy policy has a problem that is difficult to expand or has low accessibility. In this paper, to solve the problem, we propose a safety verification technique for the privacy policy using the GPT-3.5 API, which is a generative artificial intelligence. Classification work can be performed evenin a new environment, and it shows the possibility that the general public without expertise can easily inspect the privacy policy. In the experiment, how accurately the blacklist-based privacy policy and the GPT-based privacy policy classify safe and unsafe sentences and the time spent on classification was measured. According to the experimental results, the proposed technique showed 10.34% higher accuracy on average than the conventional blacklist-based sentence safety verification technique.

De-identification Policy Comparison and Activation Plan for Big Data Industry (비식별화 정책 비교 및 빅데이터 산업 활성화 방안)

  • Lee, So-Jin;Jin, Chae-Eun;Jeon, Min-Ji;Lee, Jo-Eun;Kim, Su-Jeong;Lee, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.4
    • /
    • pp.71-76
    • /
    • 2016
  • In this study, de-identification policies of the US, the UK, Japan, China and Korea are compared to suggest a future direction of de-identification regulations and a method for vitalizing the big data industry. Efficiently using the de-identification technology and the standard of adequacy evaluation contributes to using personal information for the industry to develop services and technology while not violating the right of private lives and avoiding the restrictions specified in the Personal Information Protection Act. As a counteraction, the re-identification issue may occur, for re-identifying each person as a de-identified data collection. From the perspective of business, it is necessary to mitigate schemes for discarding some regulations and using big data, and also necessary to strengthen security and refine regulations from the perspective of information security.

A Study on Strengthening Domestic Personal Information Impact Assessment(PIA)

  • Young-Bok Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.61-67
    • /
    • 2024
  • In this paper, we presented a strengthening plan to prevent personal information leakage incidents by securing legal compliance for personal information impact assessment and suggesting measures to strengthen privacy during personal information impact assessment. Recently, as various services based on big data have been created, efforts are being made to protect personal information, focusing on the EU's GDPR and Korea's Personal Information Protection Act. In this society, companies entrust processing of personal information to provide customized services based on the latest technology, but at this time, the problem of personal information leakage through consignees is seriously occurring. Therefore, the use of personal information by trustees.

Efficient Privacy-Preserving Duplicate Elimination in Edge Computing Environment Based on Trusted Execution Environment (신뢰실행환경기반 엣지컴퓨팅 환경에서의 암호문에 대한 효율적 프라이버시 보존 데이터 중복제거)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.305-316
    • /
    • 2022
  • With the flood of digital data owing to the Internet of Things and big data, cloud service providers that process and store vast amount of data from multiple users can apply duplicate data elimination technique for efficient data management. The user experience can be improved as the notion of edge computing paradigm is introduced as an extension of the cloud computing to improve problems such as network congestion to a central cloud server and reduced computational efficiency. However, the addition of a new edge device that is not entirely reliable in the edge computing may cause increase in the computational complexity for additional cryptographic operations to preserve data privacy in duplicate identification and elimination process. In this paper, we propose an efficiency-improved duplicate data elimination protocol while preserving data privacy with an optimized user-edge-cloud communication framework by utilizing a trusted execution environment. Direct sharing of secret information between the user and the central cloud server can minimize the computational complexity in edge devices and enables the use of efficient encryption algorithms at the side of cloud service providers. Users also improve the user experience by offloading data to edge devices, enabling duplicate elimination and independent activity. Through experiments, efficiency of the proposed scheme has been analyzed such as up to 78x improvements in computation during data outsourcing process compared to the previous study which does not exploit trusted execution environment in edge computing architecture.

Improving Legislation on the use of Healthcare Data for Research Purposes (보건의료 빅데이터의 연구목적 사용에 대한 법제 개선방안)

  • Park, Dae Woong;Jeong, Hyun Hak;Jeong, Myung Jin;Ryoo, Hwa Shin
    • The Korean Society of Law and Medicine
    • /
    • v.17 no.2
    • /
    • pp.315-346
    • /
    • 2016
  • With the development of big data processing technology, the potential value of healthcare big data has attracted much attention. In order to realize these potential values, various research using the healthcare big data are essential. However, the big data regulatory system centered on the Personal Information Protection Act does not take into account the aspect of big data as an economic material and causes many obstacles to utilize it as a research purpose. The regulatory system of healthcare information, centered on the primary purpose of patient treatment, should be improved in a way that is compatible with the development of technology and easy to use for public interest. To this end, it is necessary to examine the trends of overseas legal system reflecting the concerns about the balance of protection and utilization of personal information. Based on the implications of the overseas legal system, we can derive improvement points in the following directions from our legal system. First, a legal system that specializes in healthcare information and encompasses protection and utilization is needed. De-identification, which is an exception to the Privacy Act, should also clearly define its level. It is necessary to establish a legal basis for linking healthcare big data to create synergy effects in research. It is also necessary to examine the introduction of the opt-out system on the basis of the discussion on the foreign debate and social consensus. But most importantly, it is the people's trust in these systems.

  • PDF

Intelligent Video Surveillance Incubating Security Mechanism in Open Cloud Environments (개방형 클라우드 환경의 지능형 영상감시 인큐베이팅 보안 메커니즘 구조)

  • Kim, Jinsu;Park, Namje
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.105-116
    • /
    • 2019
  • Most of the public and private buildings in Korea are installing CCTV for crime prevention and follow-up action, insider security, facility safety, and fire prevention, and the number of installations is increasing each year. In the questionnaire conducted on the increasing CCTV, many reactions were positive in terms of the prevention of crime that could occur due to the installation, rather than negative views such as privacy violation caused by CCTV shooting. However, CCTV poses a lot of privacy risks, and when the image data is collected using the cloud, the personal information of the subject can be leaked. InseCam relayed the CCTV surveillance video of each country in real time, including the front camera of the notebook computer, which caused a big issue. In this paper, we introduce a system to prevent leakage of private information and enhance the security of the cloud system by processing the privacy technique on image information about a subject photographed through CCTV.

A Study on COP-Transformation Based Metadata Security Scheme for Privacy Protection in Intelligent Video Surveillance (지능형 영상 감시 환경에서의 개인정보보호를 위한 COP-변환 기반 메타데이터 보안 기법 연구)

  • Lee, Donghyeok;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.417-428
    • /
    • 2018
  • The intelligent video surveillance environment is a system that extracts various information about a video object and enables automated processing through the analysis of video data collected in CCTV. However, since the privacy exposure problem may occur in the process of intelligent video surveillance, it is necessary to take a security measure. Especially, video metadata has high vulnerability because it can include various personal information analyzed based on big data. In this paper, we propose a COP-Transformation scheme to protect video metadata. The proposed scheme is advantageous in that it greatly enhances the security and efficiency in processing the video metadata.

A Study on the Introductioin of Data Trusts System to Expand the Rights of Privacy Self-Determination (개인정보 자기결정권 확대를 위한 데이터 신탁제도 도입 방안 연구)

  • Jang, Keunjae;Lee, Seungyong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.29-43
    • /
    • 2022
  • With the advent of the Internet and the development of mobile digital devices such as smartphones and tablet PCs, the communication service paradigm began to shift from existing voice services to data services. Recently, as social network services (SNS) are activated and 4th industrial revolution technologies centered on ICT (Information and Communication Technologies) such as Big Data, Blockchain, Cloud, and 5G/6G are rapidly developed, the amount of shared data type and the amount of data are increasing rapidly. As the transition to a digital society begins actively, the importance of using data information, as well as the economic and social values of personal information are becoming increasingly important. As a result, they are actively discussing policies to revitalize the data information industry around the world and ways to efficiently obtain, analyze, and utilize increasingly diverse and vast data, as well as to protect/guarantee the rights of information subjects (providers) in various fields such as society, culture, economy, and politics.. In this paper, in order to improve the self-determination right of personal information on data produced by information subjects, and further expand the use of safe data and the data economy, a differentiated data trusts system was considered and suggested. In addition, the components and data trusts procedures necessary to efficiently operate the data trusts system in Korea were considered, and the non-profit data trusts system and the for-profit data trusts system were considered as a way to flexibly operate the data trusts system. Furthermore, the legal items necessary for the implementation of the data trusts system were investigated and considered. In this paper, in order to propose a domestic data trusts system, cases related to existing data trusts systems such as the United States, Japan, and Korea were reviewed and analyzed. In addition, in order to prepare legislation necessary for the data trusts system, data-related laws in major countries and domestic legal and policy trends were reviewed to study the rights that conflict or overlap with existing laws, and differences were investigated and considered. The Data trusts system proposed in this paper is a reasonable system that is expected to recognize the asset value of data in the capitalist market economy system, to provide legitimate compensation for data produced by data subjects, and further to contribute greatly to the use of safe data and creation of a new service market.