• Title/Summary/Keyword: big data privacy

Search Result 126, Processing Time 0.021 seconds

Exploring the Issue Structure of Drone Crime in Newspaper Articles: Focusing on Language Network Analysis (신문 기사에서의 드론 범죄 관련 이슈구조 탐색: 언어 네트워크 분석을 중심으로)

  • Park, Hee-Young;Lee, Soo-Bum
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.20-29
    • /
    • 2021
  • This study aims to explore the issue of drones and crime in newspaper articles. BIG KINDS, an online news archive of the Korea Press Foundation, collected 1,213 newspaper articles that met the terms of "drone" and "crime" in 11 central and 28 regional comprehensive newspapers between January 1, 1990 and May 1, 2021. Among them, we perform keyword frequency, centrality analysis, network structure construction, CONCOR analysis, and density matrix analysis on 117 key keywords. According to the analysis, the main issues were classified into eight, and the report analysis on drones and crimes in newspaper articles showed that the government's policy-making and social problems on protecting people's privacy, preventing illegal filming, securing navigation safety, social security and resolution. This study attempts to expand the field of humanities and social studies related to drones and crime, and specifically suggests the current status and counterplan against drone-related crimes as policy implications and media implications.

Re-defining Named Entity Type for Personal Information De-identification and A Generation method of Training Data (개인정보 비식별화를 위한 개체명 유형 재정의와 학습데이터 생성 방법)

  • Choi, Jae-hoon;Cho, Sang-hyun;Kim, Min-ho;Kwon, Hyuk-chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.206-208
    • /
    • 2022
  • As the big data industry has recently developed significantly, interest in privacy violations caused by personal information leakage has increased. There have been attempts to automate this through named entity recognition in natural language processing. In this paper, named entity recognition data is constructed semi-automatically by identifying sentences with de-identification information from de-identification information in Korean Wikipedia. This can reduce the cost of learning about information that is not subject to de-identification compared to using general named entity recognition data. In addition, it has the advantage of minimizing additional systems based on rules and statistics to classify de-identification information in the output. The named entity recognition data proposed in this paper is classified into twelve categories. There are included de-identification information, such as medical records and family relationships. In the experiment using the generated dataset, KoELECTRA showed performance of 0.87796 and RoBERTa of 0.88.

  • PDF

Ethical and Legal Implications of AI-based Human Resources Management (인공지능(AI) 기반 인사관리의 윤리적·법적 영향)

  • Jungwoo Lee;Jungsoo Lee;Ji Hun kwon;Minyi Cha;Kyu Tae Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.100-112
    • /
    • 2024
  • This study investigates the ethical and legal implications of utilizing artificial intelligence (AI) in human resource management, with a particular focus on AI interviews in the recruitment process. AI, defined as the capability of computer programs to perform tasks associated with human intelligence such as reasoning, learning, and adapting, is increasingly being integrated into HR practices. The deployment of AI in recruitment, specifically through AI-driven interviews, promises efficiency and objectivity but also raises significant ethical and legal concerns. These concerns include potential biases in AI algorithms, transparency in AI decision-making processes, data privacy issues, and compliance with existing labor laws and regulations. By analyzing case studies and reviewing relevant literature, this paper aims to provide a comprehensive understanding of these challenges and propose recommendations for ensuring ethical and legal compliance in AI-based HR practices. The findings suggest that while AI can enhance recruitment efficiency, it is imperative to establish robust ethical guidelines and legal frameworks to mitigate risks and ensure fair and transparent hiring practices.

A Study on the Protection of Personal Information in the Medical Service Act (의료법의 개인정보보호에 관한 연구)

  • Sung, Soo-Yeon
    • The Korean Society of Law and Medicine
    • /
    • v.21 no.2
    • /
    • pp.75-103
    • /
    • 2020
  • There is a growing voice that medical information should be shared because it can prepare for genetic diseases or cancer by analyzing and utilizing medical information in big data or artificial intelligence to develop medical technology and improve patient care. The utilization and protection of patients' personal information are the same as two sides of the same coin. Medical institutions or medical personnel should take extra caution in handling personal information with high environmental distinct characteristics and sensitivity, which is different from general information processors. In general, the patient's personal information is processed by medical personnel or medical institutions through the processes of collection, creation, and destruction. Still, the use of terms related to personal information in the Medical Service Act is jumbled, or the scope of application is unclear, so it relies on the interpretation of precedents. For the medical personnel or the founder of the medical institution, in the case of infringement of Article 24(4), it cannot be regarded that it means only medical treatment information among personal information, whether or not it should be treated the same as the personal information under Article 23, because the sensitive information of patients is recorded, saved, and stored in electronic medical records. Although the prohibition of information leakage under Article 19 of the Medical Service Act has a revision; 'secret' that was learned in business was revised to 'information', but only the name was changed, and the benefit and protection of the law is the same as the 'secret' of the criminal law, such that the patient's right to self-determination of personal information is not protected. The Privacy Law and the Local Health Act consider the benefit and protection of the law in 'information learned in business' as the right to self-determination of personal information and stipulate the same penalties for personal information infringement such as leakage, forgery, alteration, and damage. The privacy regulations of the Medical Service Act require that the terms be adjusted uniformly because the jumbled use of terms can confuse information subjects, information processors, and shows certain limitations on the protection of personal information because the contents or scope of the regulations of the Medical Service Law for special corporations and the Privacy Law may cause confusion in interpretation. The patient's personal information is sensitive and must be safely protected in its use and processing. Personal information must be processed in accordance with the protection principle of Privacy Law, and the rights such as privacy, freedom, personal rights, and the right to self-determination of personal information of patients or guardians, the information subject, must be guaranteed.

A Study on Reinforcing Non-Identifying Personal Sensitive Information Management on IoT Environment (IoT 환경의 비식별 개인 민감정보관리 강화에 대한 연구)

  • Yang, Yoon-Min;Park, Soon-Tai;Kim, Yong-Min
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.34-41
    • /
    • 2020
  • An era of stabilizing IoT markets and rapid expansion is coming. In an IoT environment, communication environments where objects take the lead in communication can occur depending on the situation, and communication with unspecified IoT environments has increased the need for thorough management of personal sensitive information. Although there are benefits that can be gained by changing environment due to IoT, there are problems where personal sensitive information is transmitted in the name of big data without even knowing it. For the safe management of personal sensitive information transmitted through sensors in IoT environment, the government plans to propose measures to enhance information protection in IoT environment as the use of non-identifiable personal information in IoT environment is expected to be activated in earnest through the amendment of the Data 3 Act and the initial collection method.

Effects of Online Engagement on Uses of Digital Paid Contents (온라인 관여가 디지털 유료 콘텐츠 이용에 미치는 영향)

  • Yang, JungAe;Song, Indeok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.468-481
    • /
    • 2018
  • This study aims to empirically investigate how users' online engagement behaviors predict their uses of paid contents. To this end, the data from the 2016 Korean Media Panel Survey, which has been conducted annually by the Korea Information Society Development Institute(KISDI), were analyzed. Major findings(N=8.313) were as follows. First, the active type of online engagement(e.g., posting, commenting), which contributes to direct creation of online contents, was the most powerful predictor to explain the DV. On the other hand, relatively passive actions of user engagement(e.g., sharing, endorsing, voting) turned out to have no significant effects on the uses of paid contents, just as personality traits and online privacy concerns did. Based on these results, it is recommended that online contents or platform service providers should try to establish clearly-targeted marketing strategies, after thoroughly collecting and analyzing the data of users' various online behaviors.

Model Type Inference Attack Using Output of Black-Box AI Model (블랙 박스 모델의 출력값을 이용한 AI 모델 종류 추론 공격)

  • An, Yoonsoo;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.817-826
    • /
    • 2022
  • AI technology is being successfully introduced in many fields, and models deployed as a service are deployed with black box environment that does not expose the model's information to protect intellectual property rights and data. In a black box environment, attackers try to steal data or parameters used during training by using model output. This paper proposes a method of inferring the type of model to directly find out the composition of layer of the target model, based on the fact that there is no attack to infer the information about the type of model from the deep learning model. With ResNet, VGGNet, AlexNet, and simple convolutional neural network models trained with MNIST datasets, we show that the types of models can be inferred using the output values in the gray box and black box environments of the each model. In addition, we inferred the type of model with approximately 83% accuracy in the black box environment if we train the big and small relationship feature that proposed in this paper together, the results show that the model type can be infrerred even in situations where only partial information is given to attackers, not raw probability vectors.

Contact Tracking Development Trend Using Bibliometric Analysis

  • Li, Chaoqun;Chen, Zhigang;Yu, Tongrui;Song, Xinxia
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.359-373
    • /
    • 2022
  • The new crown pneumonia (COVID-19) has become a global epidemic. The disease has spread to most countries and poses a challenge to the healthcare system. Contact tracing technology is an effective way for public health to deal with diseases. Many experts have studied traditional contact tracing and developed digital contact tracking. In order to better understand the field of contact tracking, it is necessary to analyze the development of contact tracking in the field of computer science by bibliometrics. The purpose of this research is to use literature statistics and topic analysis to characterize the research literature of contact tracking in the field of computer science, to gain an in-depth understanding of the literature development status of contact tracking and the trend of hot topics over the past decade. In order to achieve the aforementioned goals, we conducted a bibliometric study in this paper. The study uses data collected from the Scopus database. Which contains more than 10,000 articles, including more than 2,000 in the field of computer science. For popular trends, we use VOSviewer for visual analysis. The number of contact tracking documents published annually in the computer field is increasing. At present, there are 200 to 300 papers published in the field of computer science each year, and the number of uncited papers is relatively small. Through the visual analysis of the paper, we found that the hot topic of contact tracking has changed from the past "mathematical model," "biological model," and "algorithm" to the current "digital contact tracking," "privacy," and "mobile application" and other topics. Contact tracking is currently a hot research topic. By selecting the most cited papers, we can display high-quality literature in contact tracking and characterize the development trend of the entire field through topic analysis. This is useful for students and researchers new to field of contact tracking ai well as for presenting our results to other subjects. Especially when comprehensive research cannot be conducted due to time constraints or lack of precise research questions, our research analysis can provide value for it.

A Case Study on the Introduction and Use of Artificial Intelligence in the Financial Sector (금융권 인공지능 도입 및 활용 사례 연구)

  • Byung-Jun Kim;Sou-Bin Yun;Mi-Ok Kim;Sam-Hyun Chun
    • Industry Promotion Research
    • /
    • v.8 no.2
    • /
    • pp.21-27
    • /
    • 2023
  • This study studies the policies and use cases of the government and the financial sector for artificial intelligence, and the future policy tasks of the financial sector. want to derive According to Gartner, noteworthy technologies leading the financial industry in 2022 include 'generative AI', 'autonomous system', 'Privacy Enhanced Computation (PEC) was selected. The financial sector is developing new technologies such as artificial intelligence, big data, and blockchain. Developments are spurring innovation in the financial sector. Data loss due to the spread of telecommuting after the corona pandemic As interests in sharing and personal information protection increase, companies are expected to change in new digital technologies. Global financial companies also utilize new digital technology to develop products or manage and operate existing businesses. I n order to promote process innovation, I T expenses are being expanded. The financial sector utilizes new digital technology to prevent money laundering, improve work efficiency, and strengthen personal information protection. are applying In the era of Big Blur, where the boundaries between industries are disappearing, the competitive edge in the challenge of new entrants In order to preoccupy the market, financial institutions must actively utilize new technologies in their work.

Designing a Platform Model for Building MyData Ecosystem (마이데이터 생태계 구축을 위한 플랫폼 모델 설계)

  • Kang, Nam-Gyu;Choi, Hee-Seok;Lee, Hye-Jin;Han, Sang-Jun;Lee, Seok-Hyoung
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The Fourth Industrial Revolution was triggered by data-driven digital technologies such as AI and big data. There is a rapid movement to expand the scope of data utilization to the privacy area, which was considered only a protected area. Through the revision of the Data 3 Act, laws and systems were established that allow personal information to be freely transferred and utilized under their consent. But, it will be necessary to support the platform that encompasses the entire process from collecting personal information to managing and utilizing it. In this paper, we propose a platform model that can be applied to building mydata ecosystem using personal information. It describes the six essential functional requirements for building MyData platforms and the procedures and methods for implementing them. The six proposed essential features describe consent, sharing/downloading/ receipt of data, data collection and utilization, user authentication, API gateway, and platform services. We also illustrate the case of applying the MyData platform model to real-world, underprivileged mobility support services.