• Title/Summary/Keyword: big data privacy

Search Result 126, Processing Time 0.024 seconds

The Pattern Search and Complete Elimination Method of Important Private Data in PC (PC에서 중요개인정보의 패턴 검색과 완전삭제방법 연구)

  • Seo, Mi-Suk;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.213-216
    • /
    • 2013
  • Big data, the use of privacy has been increasing to the development of wireless network infrastructure or technology development and wired Internet. By the way, Enforcement of private data preservation law the infringement accident which is still caused by despite with private data outflow occurs. The private data outflow avoids finance and to become the fire tube. Analyzes the pattern of private data from search of private data and detection process and the research which it extracts and the research is necessary in about perfection elimination of the private data which is unnecessary. From the research which it sees it researched a pattern extraction research and a complete elimination method in about private data protection and it did the pattern extraction and a complete elimination experiment of private data.

  • PDF

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

A Privacy Approach Model for Multi-Access to IoT Users based on Society 5.0 (소사이어티 5.0 기반 IoT 사용자에 대한 다중 접근방식의 프라이버시 접근 모델)

  • Jeong, Yoon-Su;Yon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • Recently, research on Society 5.0 has been actively carried out in Japan. The Society 5.0 is used in various areas using IoT sensors. This paper proposes a privacy approach model of multiple approaches to IoT users based on Society 5.0. The proposed model used multiple methods of synchronizing important information of IoT devices with one another in the virtual environment. The proposed model improved the efficiency of IoT information by accumulating the weight of IoT information on a probability-based basis. Further, it improves the accuracy of IoT information by segmenting it so that attribute information is linked to IoT information. As a result of the performance evaluation, the efficiency of IoT devices has improved by an average of 5.6 percent, depending on the number of IoT devices and the number of IoT hub devices. Accuracy has improved by an average of 15.9% depending on information collection and processing.

A Study on Notification Method of Personal Information Usage History using MyData Model (마이데이터 모델을 활용한 개인정보 이용내역 통지 방안 연구)

  • Kim, Taekyung;Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • With the development of the 4th industry, big data using AI is being used in many areas of our lives, and the importance of data is increasing accordingly. In particular, as various services using personal information appear and hacking attacks that exploit them appear in various ways, the importance of personal information management is increasing. Personal information must be managed safely even when collecting, retaining, using, providing, and destroying personal information, and the rights of information subjects must be protected. In this paper, an analysis was performed on the notification of usage history during the protection of the rights of information subjects using the MyData model. According to the Personal Information Protection Act, users must be periodically notified of the use of personal information, so we notify each individual of the use of personal information through e-mail or SNS once a year. It is difficult to understand and manage which company use my personal information. Therefore, in this paper, a personal information usage history notification system model was proposed, and as a result of performance analysis, it is possible to provide the controllability, availability, integrity, source authentication, and personal information self-determination rights.

Exploring User Attitude to Information Privacy (개인정보 노출에 대한 인터넷 사용자의 태도에 관한 연구)

  • Baek, Seung Ik;Choi, Duk Sun
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.45-59
    • /
    • 2015
  • As many companies have been interested in big data, they have invested a lot of resources to get more customer data. Some companies try to trade the data illegally. In order to collect more customer data, companies provide various incentive programs to customers. However, their results are normally much less than their expectations. This study focuses on exploring the relative importance of the factors which influence customer attitudes to providing his/her personal information. This study conducts a conjoint analysis to assess trade-offs among the five influential factors-monetary reward, concern for data collection, concern for secondary use, concern for unauthorized use, and concern for errors. This study finds that the customer attitude to providing personal information is most influenced by the concern for secondary use. Furthermore, it shows that there are some differences between the light internet user group and the heavy internet user group in the relative importances of these factors. The monetary rewards appeal to the heavy internet users, rather than the light internet users.

An Efficiency Management Scheme using Big Data of Healthcare Patients using Puzzy AHP (퍼지 AHP를 이용한 헬스케어 환자의 빅 데이터 사용의 효율적 관리 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • The recent health care is growing rapidly want to receive offers users a variety of medical services, can be exploited easily exposed to a third party information on the role of the patient's hospital staff (doctors, nurses, pharmacists, etc.) depending on the patient clearly may have to be classified. In this paper, in order to ensure safe use by third parties in the health care environment, classify the attributes of patient information and patient privacy protection technique using hierarchical multi-property rights proposed to classify information according to the role of patient hospital officials The. Hospital patients and to prevent the proposed method is represented by a mathematical model, the information (the data consumer, time, sensor, an object, duty, and the delegation circumstances, and so on) the privacy attribute of a patient from being exploited illegally patient information from a third party the prevention of the leakage of the privacy information of the patient in synchronization with the attribute information between the parties.

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

A Study on Risks of Big Data (빅데이터의 위험 요소에 대한 고찰)

  • Yoonsoo Cheon;Jaekyung Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.631-633
    • /
    • 2023
  • 본 논문에서는 빅데이터의 활용이 확산되는 현대 사회에서 빅데이터의 수집, 관리, 이용 등에서 나타날 수 있는 문제를 확인하고 그 문제에 대한 기존의 대응 방법과 보완점을 시사한다. 빅데이터의 위험성은 개인 정보유출, 디지털 디바이드, 편향성과 신뢰성, 의존성과 통제 가능성 등이 있다. 해당 문제는 빅데이터의 보편화가 가중될수록 큰 규모의 사회적 문제로 대두될 가능성이 높다. 이를 보완하기 위한 대응 방법을 크게 기술적 대응, 법적 대응, 사회적 대응으로 나누어 알아보고 각 부분의 취약점을 분석하여 개선의 방향을 제시한다.

  • PDF

Research Trend on AI Security Using Keyword Frequency and Centrality Analysis : Focusing on the United States, United Kingdom, South Korea (키워드 빈도와 중심성 분석을 이용한 인공지능 보안 연구 동향 : 미국·영국·한국을 중심으로)

  • Lee Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.13-27
    • /
    • 2023
  • In this study, we tried to identify research trends on artificial intelligence security focusing on the United States, United Kingdom, and South Korea. In Elsevier's Scopus We collected 4,983 papers related to artificial intelligence security published from 2018 to 2022 and by using the abstracts of the collected papers, Keyword frequency and centrality analysis were conducted. By calculating keyword frequency, keywords with high frequency of appearance were identified and through the centrality analysis, central research keywords were identified by country. Through the analysis results, research related to artificial intelligence, machine learning, Internet of Things, and cybersecurity in each country was conducted as the most central and highly mediating research. The implication for Korea is that research related to cybersecurity, privacy, and anomaly detection has lower centralities compared to the United States and research related to big data has lower centralities compared to United Kingdom. Therefore, various researches that intensively apply artificial intelligence technology to these fields are needed.

The Politics of Internet Content Regulation in the U.S.: A Case Study on Communications Decency Act Section 230 Reform with New Institutionalist Approach (미국 인터넷 내용규제의 정치: 신제도주의로 본 연방통신품위법 230조 개정 논의)

  • Choi, Jaedong
    • Informatization Policy
    • /
    • v.29 no.3
    • /
    • pp.48-60
    • /
    • 2022
  • This research analyzes the potential reform of Section 230 of the Communications Decency Act through the new institutionalist approach. The immunity provision of the Section 230, which has developed the U.S. Internet content regulation regime and protected big tech firms, is facing a significant change today. The chambers of Congress have attempted to limit the immunity shield for platforms with bipartisanship. As a result of analysis through the perspective of historical institutionalism, a critical change could come from external events including fake news controversies and data privacy scandals, as well as endogenous factors such as conflicts among actors. The discussion deals with the possible direction of Internet content regulation reforms in Korea.