• 제목/요약/키워드: big data analysis technology

검색결과 1,127건 처리시간 0.025초

하둡 분산 환경 기반의 데이터 수집 기법 연구 (A Study on the Data Collection Methods based Hadoop Distributed Environment)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제7권5호
    • /
    • pp.1-6
    • /
    • 2016
  • 최근 빅데이터 활용과 분석기술의 발전을 위하여 많은 연구가 이루어지고 있고, 빅데이터를 분석하기 위하여 처리 플랫폼인 하둡을 도입하는 정부기관 및 기업이 점차 늘어가고 있는 추세이다. 이러한 빅데이터의 처리와 분석에 대한 관심이 고조되면서 그와 병행하여 데이터의 수집 기술이 주요한 이슈가 되고 있으나, 데이터 분석 기법의 연구에 비하여 수집 기술에 대한 연구는 미미한 상황이다. 이에 본 논문에서는 빅데이터 분석 플랫폼인 하둡을 클러스터로 구축하고 아파치 스쿱을 통하여 관계형 데이터베이스로부터 정형화된 데이터를 수집하고, 아파치 플룸을 통하여 센서 및 웹 애플리케이션의 데이터 파일, 로그 파일과 같은 비정형 데이터를 스트림 기반으로 수집하는 시스템을 제안한다. 이러한 융합을 통한 데이터 수집으로 빅데이터 분석의 기초적인 자료로 활용할 수 있을 것이다.

자유학기제 운영계획서에 대한 텍스트 빅데이터 분석 및 요약 (Text Big Data Analysis and Summary for Free Semester Operational Plan Document)

  • 이수안;박범준;김민규;신혜숙;김진호
    • 컴퓨터교육학회논문지
    • /
    • 제22권3호
    • /
    • pp.135-146
    • /
    • 2019
  • 사회 각 분야에서 관련 주제에 대한 보다 직접적인 정보를 수집하고 분석하기 위하여 빅데이터 분석이 활발하게 활용되고 있다. 우리나라에서 사회적 관심과 파급 효과가 큰 교육 분야에서도 빅데이터 분석 기술을 활용하여 교육이나 정책의 효과를 파악하고 정책 수립에 활용하는 것에 관심이 높아지고 있다. 본 논문에서는 교육 분야에서 빅데이터 분석 기술을 활용하는 방안을 소개하고자 한다. 현재 핵심 교육정책 중의 하나인 자유학기제에 초점을 두고, 각 학교가 작성한 운영계획서에 대해 텍스트 분석과 시각화를 통하여 주요 관심 사항과 차이점에 대해 살펴보았다. 특히 서울과 강원도 지역의 중학교 자유학기제 운영계획서를 대상으로 지역적으로 주요 특성과 관심 사항이 서로 다르다는 것을 비교하였다. 본 연구는 빅데이터 분석 기술을 교육 분야의 필요와 요구에 따라 적용하고 활용하였다는 것에 큰 의의가 있다.

빅데이터 플랫폼을 이용한 보안로그 분석 시스템 구현 모델 연구 (A Study on implementation model for security log analysis system using Big Data platform)

  • 한기형;정형종;이두식;채명희;윤철희;노규성
    • 디지털융복합연구
    • /
    • 제12권8호
    • /
    • pp.351-359
    • /
    • 2014
  • 보안 장비에서 발생하는 로그는 그동안 ESM(Enterprise Security Management) 기반으로 통합적으로 데이터를 분석하였으나 데이터 저장 용량의 한계와 ESM자체의 데이터 처리 성능의 한계로 빅데이터 처리에 부적합하기 때문에 빅데이터 플랫폼을 이용한 보안로그 분석 기술이 필요하다. 빅데이터 플랫폼은 Hadoop Echosystem을 이용하여 대용량의 데이터 수집, 저장, 처리, 검색, 분석, 시각화 기능을 구현할 수 있다. 현재 ESM기술은 SIEM(Security Information & Event Management)방식으로 기술이 발전하고 있으며 SIEM방식의 보안기술을 구현하기 위해서는 현재 보안장비에서 발생하는 방대한 로그 데이터를 처리할 수 있는 빅데이터 플랫폼 기술이 필수적이다. 본 논문은 Hadoop Echosystem 이 가지고 있는 빅데이터 플랫폼 기술을 활용하여 보안로그를 분석하기 위한 시스템을 어떻게 구현할 수 있는지에 대한 모델을 연구하였다.

Big Data Analysis of Weather Condition and Air Quality on Cosmetics Marketing

  • Wang, Zebin;Wu, Tong;Zhao, Xinshuang;Cheng, Shuchun;Dai, Genghui;Dai, Weihui
    • Journal of Information Technology Applications and Management
    • /
    • 제24권3호
    • /
    • pp.93-105
    • /
    • 2017
  • Demands of cosmetics are affected not only by the well-known elements such as brand, price, and customer's consumption capacity, but also by some latent factors, for example, weather and air environment. Due to complexity and dynamic changes of the above factors, their influences can hardly be estimated in an accurate way by the traditional approaches such as survey and questionnaires. Through modeling and statistical analysis of big data, this article studied the impacts of weather condition and air quality on customer flow and sales of the cosmetics distributors in China, and found several hidden influencing factors. It provided a big-data based method for the analysis of unconventional factors on cosmetics marketing in the changing weather condition and air environment.

하둡과 순차패턴 마이닝 기술을 통한 교통카드 빅데이터 분석 (Analysis of Traffic Card Big Data by Hadoop and Sequential Mining Technique)

  • 김우생;김용훈;박희성;박진규
    • Journal of Information Technology Applications and Management
    • /
    • 제24권4호
    • /
    • pp.187-196
    • /
    • 2017
  • It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.

빅데이터 분석을 활용한 인공지능 인식에 관한 연구 (A Study on Recognition of Artificial Intelligence Utilizing Big Data Analysis)

  • 남수태;김도관;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.129-130
    • /
    • 2018
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터 분석을 2011년 이래로 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 새로운 가치 창출을 위해 노력을 하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석 도구인 소셜 매트릭스를 활용하여 분석하였다. 2018년 5월 19일 시점 1개월 기간을 설정하여 "인공지능" 키워드에 대한 대중들의 인식을 분석하였다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 인공지능에 대한 1위 연관 검색어는 중국(4,122)인 것으로 나타났다. 결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF

빅데이터 분석도구 R을 이용한 성경 데이터의 빈도와 소셜 네트워크 분석 (Frequency and Social Network Analysis of the Bible Data using Big Data Analytics Tools R)

  • 반재훈;하종수;김동현
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.166-171
    • /
    • 2020
  • 데이터를 저장하고 분석하여 새로운 지식을 얻을 수 있는 빅데이터 처리기술은 사회의 여러 분야에서 중요성이 강조되고 있으며 정보통신기술 분야의 핵심 이슈로 부각되면서 관련 기술에 대한 관심이 증가하고 있다. 이러한 빅데이터를 분석할 수 있는 도구인 R은 통계 기반의 정보 분석을 가능하게 하는 언어와 환경이다. 본 논문에서는 이를 이용하여 성경데이터를 분석한다. 성경 중에서 신약성경의 4복음서의 데이터를 분석한다. 먼저 성경데이터를 수집하고 분석을 위한 필터링을 수행한다. 이후 R을 이용하여 어떠한 텍스트가 분포되어 있는지를 빈도 조사를 수행하며 정확한 데이터의 분석을 위해 한 문장에서 나오는 단어들을 쌍으로 표현하고 단어 간의 관계성을 분석하는 소셜 네트워크 분석을 통해 성경을 분석한다.

Role of Big Data Technology and Whistleblowing System in Distribution of Fraud Detection

  • Idrawahyuni;Gagaring PAGALUNG;Darwis SAID;Grace T. PONTOH
    • 유통과학연구
    • /
    • 제22권9호
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: The purpose of the research is to find out and analyze the direct influence of forensic audits and auditor integrity on Fraud Detection and indirect effects through big data technology and whistleblowing systems in Indonesian BPK. The research method used is a survey research method. Surveys are primary data collection methods by asking 254 individual respondents. The unit of analysis is an individual, namely the BPK RI auditors. Results of this study found a forensic audit has a positive and significant effect on fraud detection, Auditor Integrity has a positive and significant effect on Fraud Detection; and forensic Audit has a positive and significant effect on big data technology, A forensic Audit has a positive and significant effect on the whistleblowing system, Integrity auditor has a positive and significant effect on big data technology, The whistleblowing system has a positive and significant effect on fraud detection, Big data technology has a positive and significant effect on fraud detection, The whistleblowing system has a positive and significant effect on fraud detection. Similar to how we used cross-sectional data, future research is urged to use an interview-based qualitative approach to avoid typical technique bias.

빅데이터를 이용한 자동 이슈 분석 시스템 (An Automatic Issues Analysis System using Big-data)

  • 최동열;안은영
    • 한국콘텐츠학회논문지
    • /
    • 제20권2호
    • /
    • pp.240-247
    • /
    • 2020
  • 빠르게 변화하는 온라인상의 정보 흐름과 트랜드를 이해하고 IT기술 환경변화에 대응하기 위해서 필요한 선제적 제도 마련을 위한 한 가지 방안으로 빅데이터를 이용하고자 하는 노력이 최근 들어 더욱 가속화 되고 있다. 논문에서는 인공지능 기반의 빅데이터 처리를 통한 이슈 분석 시스템의 개발과 연구를 통해 빅데이터 처리를 위한 새로운 기술의 가능성을 확인하고자 한다. 이를 위해, 고속의 병렬처리가 가능해진 인공신경망을 사용, 의미 추론 및 패턴분석을 위한 처리 기법을 제안하고 구현을 통해 제안하는 방법에 대한 빅데이터 처리의 적합성을 알아본다. 정보보안의 중요성을 감안하여, 인공 신경망을 이용한 이슈 분석 시스템을 최근의 보안 이슈 분석에 활용해봄으로써 제안하는 방식이 실제 빅데이터 처리에 유용하게 활용 될 수 있음을 검증한다. 실험을 통해서 제안된 방식에 대한 다양한 목적의 빅데이터 처리를 위한 기반 기술로의 활용 가능성을 확인한다.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.