• 제목/요약/키워드: bidirectional functionally graded material

검색결과 12건 처리시간 0.019초

Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.663-686
    • /
    • 2014
  • This paper deals with free vibration analysis of bidirectional functionally graded annular plates resting on a two-parameter elastic foundation. The formulations are based on the three-dimensional elasticity theory. This study presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D functionally graded materials that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated by using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The fast rate of convergence of the method is shown and the results are compared against existing results in literature. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded materials.

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam

  • Zhou, Jinxuan;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.85-97
    • /
    • 2022
  • Using a combination of nonlocal Eringen as well as classical beam theories, this research explores the thermal buckling of a bidirectional functionally graded nanobeam. The formulations of the presented problem are acquired by means on conserved energy as well as nonlocal theory. The results are obtained via generalized differential quadrature method (GDQM). The mechanical properties of the generated material vary in both axial and lateral directions, two-dimensional functionally graded material (2D-FGM). In nanostructures, porosity gaps are seen as a flaw. Finally, the information gained is used to the creation of small-scale sensors, providing an outstanding overview of nanostructure production history.

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

Buckling analysis of bidirectional FG porous beams in thermal environment under general boundary condition

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.275-284
    • /
    • 2024
  • This work presents a comprehensive investigation of buckling behavior of bidirectional functionally graded imperfect beams exposed to several thermal loading with general boundary conditions. The nonlinear governing equations are derived based on 2D shear deformation theory together with Von Karman strain-displacement relation. The beams are composed of two different materials. Its properties are porosity-dependent and are continuously distributed over the length and thickness of the beams following a defined law. The resulting equations are solved analytically in order to determine the thermal buckling characteristics of BDFG porous beams. The precision of the current solution and its accuracy have been proven by comparison with works previously published. Numerical examples are presented to explore the effects of the thermal loading, the elastic foundation parameters, the porosity distribution, the grading indexes and others factors on the nonlinear thermal buckling of bidirectional FG beam rested on elastic foundation.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium

  • Heydari, Abbas;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.737-748
    • /
    • 2018
  • The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the simpler cases are provided in appendices.

Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Mohammad Gholami;Mojtaba Gorji Azandariani;Ahmed Najat Ahmed;Hamid Abdolmaleki
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.127-139
    • /
    • 2023
  • This paper studies the free vibration behavior of bi-dimensional functionally graded (BFG) nanobeams subjected to arbitrary boundary conditions. According to Eringen's nonlocal theory and Hamilton's principle, the underlying equations of motion have been obtained for BFG nanobeams. Moreover, the variable substitution method is utilized to establish the structure's state-space differential equations, followed by forming the dynamic stiffness matrix based on state-space differential equations. In order to compute the natural frequencies, the current study utilizes the Wittrick-Williams algorithm as a solution technique. Moreover, the nonlinear vibration frequencies calculated by employing the proposed method are compared to the frequencies obtained in previous studies to evaluate the proposed method's performance. Some illustrative numerical examples are also given in order to study the impacts of the nonlocal parameters, material property gradient indices, nanobeam length, and boundary conditions on the BFG nanobeam's frequency. It is found that reducing the nonlocal parameter will usually result in increased vibration frequencies.

Free vibration of tapered BFGM beams using an efficient shear deformable finite element model

  • Nguyen, Dinh Kien;Tran, Thi Thom
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.363-377
    • /
    • 2018
  • An efficient and free of shear locking finite element model is developed and employed to study free vibration of tapered bidirectional functionally graded material (BFGM) beams. The beam material is assumed to be formed from four distinct constituent materials whose volume fraction continuously varies along the longitudinal and thickness directions by power-law functions. The finite element formulation based on the first-order shear deformation theory is derived by using hierarchical functions to interpolate the displacement field. In order to improve efficiency and accuracy of the formulation, the shear strain is constrained to constant and the exact variation of the cross-sectional profile is employed to compute the element stiffness and mass matrices. A comprehensive parametric study is carried out to highlight the influence of the material distribution, the taper and aspect ratios as well as the boundary conditions on the vibration characteristics. Numerical investigation reveals that the proposed model is efficient, and it is capable to evaluate the natural frequencies of BFGM beams by using a small number of the elements. It is also shown that the effect of the taper ratio on the fundamental frequency of the BFGM beams is significantly influenced by the boundary conditions. The present results are of benefit to optimum design of tapered FGM beam structures.

Nonlinear bending analysis of bidirectional graded porous plates with elastic foundations relative to neutral surface

  • Amr E. Assie
    • Advances in aircraft and spacecraft science
    • /
    • 제11권2호
    • /
    • pp.129-152
    • /
    • 2024
  • The applicability of a novel incremental-iterative technique with 2D differential/integral quadrature method (DIQM) in analyzing the nonlinear behavior of Bi-directional functionally graded (BDFG) porous plate based on neutral surface is verified in the present works. A formulation of four variables high shear deformation theory is used to describe the kinematic relations with respect to neutral surface rather than mid-plane. Bi-directional material distributions are presented by power functions through both thickness and axial directions. Porosities and voids are distributed by different cosine functions. The large deformations are included within the sense of nonlinear von Kármán strains. The integro-differential equilibrium equations with associated modified boundary conditions are solved numerically and iteratively by using 2D DIQM. Model validations and parametric analysis are depicted to present the influence of neutral axis, nonlinear strains, gradation indices, elastic foundations, and modified boundary conditions on the static deflection in addition to normal and shear stresses. The proposed model is effective in analyzing the static behavior of many real applications in nuclear reactors, marine and aerospace structures with large deformations.