• Title/Summary/Keyword: bias current

Search Result 1,079, Processing Time 0.027 seconds

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

Direct Current (DC) Bias Stress Characteristics of a Bottom-Gate Thin-Film Transistor with an Amorphous/Microcrystalline Si Double Layer

  • Jeong, Tae-Hoon;Kim, Si-Joon;Kim, Hyun-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.197-199
    • /
    • 2011
  • In this paper, the bottom-gate thin-film transistors (TFTs) were fabricated with an amorphous/microcrystalline Si double layer (DL) as an active layer and the variations of the electrical characteristics were investigated according to the DC bias stresses. Since the fabrication process of DL TFTs was identical to that of the conventional amorphous Si (a-Si) TFTs, it creates no additional manufacturing cost. Moreover, the amorphous/microcrystalline Si DL could possibly improve stability and mass production efficiency. Although the field effect mobility of the typical DL TFTs is similar to that of a-Si TFTs, the DL TFTs had a higher reliability with respect to the direct current (DC) bias stresses.

Studies of Effects of Current on Exchange-Bias: A Brief Review

  • Bass, J.;Sharma, A.;Wei, Z.;Tsoi, M.
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • MacDonald and co-workers recently predicted that high current densities could affect the magnetic order of antiferromagnetic (AFM) multilayers, in ways similar to those that occur in ferromagnetic (F) multilayers, and that changes in AFM magnetic order can produce an antiferromagnetic Giant Magnetoresistance (AGMR). Four groups have now studied current-driven effects on exchange bias at F/AFM interfaces. In this paper, we first briefly review the main predictions by MacDonald and co-workers, and then the results of experiments on exchange bias that these predictions stimulated.

Analysis of the electrical characteristics with back-gate bias in n-channel thin film SOI MOSFET (N-채널 박막 SOI MOSFET의 후면 바이어스에 따른 전기적 특성 분석)

  • 이제혁;임동규;정주용;이진민;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.461-463
    • /
    • 1999
  • In this paper, we have systematically investigated the variation of electrical characteristics with back-gate bias of n-channel SOI MOSFET\\`s. When positive bias is applied back-gate surface is inverted and back channel current is increased. When negative bias is applied back-gate surface is accumulated but it does not affect to the electrical characteristics.

  • PDF

Temperature-Adaptive Back-Bias Voltage Generator for an RCAT Pseudo SRAM

  • Son, Jong-Pil;Byun, Hyun-Geun;Jun, Young-Hyun;Kim, Ki-Nam;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.406-413
    • /
    • 2010
  • In order to guarantee the proper operation of a recessed channel array transistor (RCAT) pseudo SRAM, the back-bias voltage must be changed in response to changes in temperature. Due to cell drivability and leakage current, the obtainable back-bias range also changes with temperature. This paper presents a pseudo SRAM for mobile applications with an adaptive back-bias voltage generator with a negative temperature dependency (NTD) using an NTD VBB detector. The proposed scheme is implemented using the Samsung 100 nm RCAT pseudo SRAM process technology. Experimental results show that the proposed VBB generator has a negative temperature dependency of -0.85 $mV/^{\circ}C$, and its static current consumption is found to be only 0.83 ${\mu}A$@2.0 V.

The degradation phenomena in SiGe hetero-junction bipolar transistors induced by bias stress (바이어스 스트레스에 의한 실리콘-게르마늄 이종접합 바이폴라 트랜지스터의 열화 현상)

  • Lee, Seung-Yun;Yu, Byoung-Gon
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.229-237
    • /
    • 2005
  • The degradation phenomena in SiGe hetero-junction bipolar transistors(SiGe HBTs) induced by bias stress are investigated in this review. If SiGe HBTs are stressed over a specific time interval, the device parameters deviate from their nominal values due to the internal changes in the devices. Reverse-bias stress on emitter-base(EB) junctions causes base current increase and current gain decrease because carriers accelerated by the electrical field generate recombination centers. When forward-bias current stress is conducted at an ambient temperature above $140^{\circ}C$ , hot carriers produced by Auger recombination or avalanche multiplication induce current gain fluctuation. Mixed-mode stressing, where high emitter current and high collector-base voltage are simultaneously applied to the device, provokes base current rise as EB reverse-bias stressing does.

Design of the RLG Current Stabilizer for Attitude Control in the Satellite (저궤도 위성 자세제어용 RLG 전류 안정화 회로 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.98-101
    • /
    • 2008
  • In this paper, we describe the RLG current stabilizer circuit for attitude control in the satellite. The RLG makes use of the Sagnac effect within a resonant of a HeNe laser. The difference between two discharge currents causes one of the gyro bias errors. The theoretical background and current stabilizer are introduced. It is verified that the circuit designed is applicable to the test of input voltage and temperature.

Subthreshold Current Model of FinFET Using Three Dimensional Poisson's Equation

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • This paper has presented the subthreshold current model of FinFET using the potential variation in the doped channel based on the analytical solution of three dimensional Poisson's equation. The model has been verified by the comparison with the data from 3D numerical device simulator. The variation of subthreshold current with front and back gate bias has been studied. The variation of subthreshold swing and threshold voltage with front and back gate bias has been investigated.

Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3/Nb-1.0 wt% Doped SrTiO3 Heterostructures

  • Wang, Wei Tian
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.333-337
    • /
    • 2020
  • Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.

Temperature Stable Current Source Using Simple Self-Bias Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 2009
  • In this paper, temperature stable current and voltage references using simple CMOS bias circuit are proposed. To obtain temperature stable characteristics of bias circuit a bandgap reference concept is used in a conventional circuit. The parasitic bipolar transistors or MOS transistors having different threshold voltage are required in a bandgap reference. Thereby the chip area increase or the extra CMOS process is required compared to a standard CMOS process. The proposed reference circuit can be integrated on a single chip by a standard CMOS process without the extra CMOS process. From the simulation results, the reference current variation is less than ${\pm}$0.44% over a temperature range from - $20^{\circ}C$ to $80^{\circ}C$. And the voltage variation is from - 0.02% to 0.1%.