• Title/Summary/Keyword: bi-spectrum

Search Result 113, Processing Time 0.025 seconds

Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process

  • Jeon, Sang-Chul;Kim, Young-Su;Lee, Dong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • This report covers an effective fabrication method of graphene nanoribbon for top-gated field effect transistors (FETs) utilizing electron beam lithography with a bi-layer resists (XR-1541/poly methtyl methacrylate) process. To improve the variation of the gating properties of FETs, the residues of an e beam resist on the graphene channel are successfully taken off through the combination of reactive ion etching and a lift-off process for the XR-1541 bi-layer. In order to identify the presence of graphene structures, atomic force microscopy measurement and Raman spectrum analysis are performed. We believe that the lift-off process with bi-layer resists could be a good solution to increase gate dielectric properties toward the high quality of graphene FETs.

Molecular Dyamics Simulation and Far Infrared Measurements of $Ba_{0.6}K_{0.4}BiO_3$

  • Lee, C.Y.;Song, Ki.Y.;Sperline, R.P.
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.555-560
    • /
    • 1996
  • The vibrational behavior and the molecular dynamics of the high Tc superconductor Ba0.6K0.4BiO3 have been studied experimentally and by atomistic computer simulation methods. For Ba0.6K0.4BiO3, the vibrational spectrum is dominated by oxygen ion modes from 150cm-1 to 820cm-1 including infrared absorption bands at 330, 480, 640 and 830cm-1including infrared absorption bands at 330, 480, 640 and 830cm-1at room temperature. Band assignments are discussed in relation to those bands predicted by simulations, and the infrared and Raman measurements reported in the literature.

  • PDF

Spectrum Hole Utilization in Cognitive Two-way Relaying Networks

  • Gao, Yuan;Zhu, Changping;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.890-910
    • /
    • 2014
  • This paper investigates the spectrum hole utilization of cooperative schemes for the two-way relaying model in order to improve the utilization efficiency of limited spectrum holes in cognitive radio networks with imperfect spectrum sensing. We propose two specific bidirectional secondary data transmission (BSDT) schemes with two-step and three-step two-way relaying models, i.e., two-BSDT and three-BSDT schemes, where the spectrum sensing and the secondary data transmission are jointly designed. In the proposed cooperative schemes, the best two-way relay channel between two secondary users is selected from a group of secondary users serving as cognitive relays and assists the bi-directional communication between the two secondary users without a direct link. The closed-form asymptotic expressions for outage probabilities of the two schemes are derived with a primary user protection constraint over Rayleigh fading channels. Based on the derived outage probabilities, the spectrum hole utilization is calculated to evaluate the percentage of spectrum holes used by the two secondary users for their successful information exchange without channel outage. Numerical results show that the spectrum hole utilization depends on the spectrum sensing overhead and the channel gain from a primary user to secondary users. Additionally, we compare the spectrum hole utilization of the two schemes as the varying of secondary signal to noise ratio, the number of cognitive relays, and symmetric and asymmetric channels.

Photocatalytic Decomposition of Rhodamine B over BiVO4 Doped with Samarium Ion (Sm 이온이 도핑된 BiVO4에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.146-151
    • /
    • 2021
  • Pure and Sm ion doped BiVO4 catalysts were synthesized using a conventional hydrothermal method and characterized by XRD, DRS, SEM, and PL. We also examined the activity of these materials on the photocatalytic decomposition of rhodamine B under visible light irradiation. The doping of Sm ion into BiVO4 catalyst changed the ms-BiVO4 crystal structure into the tz-BiVO4 crystal structure in the low synthesis temperature. Light absorption analysis using DRS showed that all the catalysts displayed strong absorption in the visible range of the electromagnetic spectrum regardless of Sm ion doping. In addition, an amorphous morphology was shown in the pure BiVO4 catalyst, but the morphology of the BiVO4 catalyst doped with Sm ion was changed into an ellipse shape and also the particle size decreased. In the photocatalytic decomposition of rhodamine B, Sm ion doped BiVO4 catalyst showed higher photocatalytic activity than the pure BiVO4 catalyst. In addition, the Sm3-BVO catalyst doped with 3% Sm ion showed the highest photocatalytic activity, as well as the highest formation rate of OH radicals (•OH) and the highest PL peak. This result suggests that the formation rate of OH radicals produced in the interface between the photocatalyst and water is well correlated with the photocatalytic activity.

Photocatalytic Decomposition of Rhodamin B over Bi2MoO6 Prepared Using Hydrothermal Process (수열합성법으로 제조된 Bi2MoO6에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.123-128
    • /
    • 2019
  • $Bi_2MoO_6$ catalysts were successfully synthesized using ethylene glycol monomethyl ether (EGME), glycerol (GL), ethylene glycol (EG), and water as solvents by a conventional hydrothermal method. The synthesized catalysts were characterized by XRD, DRS, BET, SEM, and PL, and we also investigated the photocatalytic activity of these materials for the decomposition of Rhodamin B under visible light irradiation. The XRD results revealed the successful synthesis of 12-18 nm, well-crystallized ${\gamma}-Bi_2MoO_6$ crystals with an Aurivillius structure regardless of solvent. In addition, the $Bi_2MoO_6$ catalysts prepared below $140^{\circ}C$ showed an amorphous phase; however, those prepared above $160^{\circ}C$ showed well-crystallized ${\gamma}-Bi_2MoO_6$ crystals. All the catalysts have a similar absorption spectrum from the ultraviolet region up to the visible region less than 470 nm. This result suggests that all the $Bi_2MoO_6$ catalysts are potential visible-light-driven photocatalysts. The $Bi_2MoO_6$ catalysts prepared using EGME as a solvent showed the highest photocatalytic activity. In addition, the $Bi_2MoO_6$ catalysts prepared at $180^{\circ}C$ showed the highest photocatalytic activity. The PL peaks appeared at about 560 nm at all catalysts and the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of Rhodamin B. This suggests that the stronger the PL intensity, the larger the amount of oxygen vacancies and defects, and the higher the photocatalytic activity.

Transient testing from LV / SC coupled analysis by new shock synthesis

  • Girard, Alain;Cavro, Etienne;Dupuis, Paul-Eric
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.177-186
    • /
    • 2018
  • This paper deals with the idea to replace the usual high-level sine sweep test on shaker at system level, very severe, by a low level one completed by a transient test in the same configuration, in order to be more representative of the real environment, thus limiting over testing and improving the payload comfort. The problem of the transient test specification is first discussed. The proposed solution is to derive from LV/SC coupled analyses a shock response spectrum corresponding to two damping ratios. Then, the question of adequate shock synthesis is tackled. A new method with a given spectrum is considered for better potential and accuracy than the usual wavelets. A campaign on the Intespace bi-shaker devoted to system level showed its capability to perform the resulting test with one spectrum. First investigations to extend this approach to two spectra are in progress.

Crystal Growth and Scintillation Properties of CsI:Gd (CsI:Gd 결정 육성과 섬광 특성)

  • Cheon, Jong-Kyu;Kim, Sung-Hwan;Kim, Hong-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.293-297
    • /
    • 2012
  • CsI:Gd crystal was grown by the Bridgeman method and its scintillation properties were investigated. The wavelength peak of the luminescence spectrum for the crystal excited by X-ray was 419 nm. The range of the spectrum was from 300 nm to 800 nm. The spectrum well matched to the quantum efficiency of a typical bi-alkali photo-multiplier tube(PMT). An energy resolution of 48.2 % was obtained for 662 keV ${\gamma}$-rays of $^{137}Cs$. The three decay times were obtained as a fast(557.4 ns, 42.2 %), intermediate (1.78 ${\mu}s$, 29.7 %) and slow (5.43 ${\mu}s$, 28.1 %) components, respectively.

Opticsal Characteristics of Bismuth-doped Aluminosilicate Glass Codoped with Li and Ge (Bi 첨가 알루미노실리케이트 유리에서 Li 및 Ge 공첨가가 광 특성에 미치는 영향)

  • Seo, Young-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.221-225
    • /
    • 2007
  • The possibility of improving amplification characteristics and lowering the melting point of bismuth-doped aluminosilicate glass as a new amplification material, which has broadband near-infrared emission at 1300 nm regions, was investigated. Spectroscopic analysis of bismuth-doped aluminosilicate glass shows that the addition of an alkali metal oxide, $Li_{2}O$ increases FWHM of fluorescence spectrum but decreases fluorescence intensity, while $GeO_{2}$ composition increases both FWHM of fluorescence spectrum and fluorescence intensity. Also, excellent optical amplification gain characteristics in a $GeO_{2}$-added sample were observed.

A Study on a High-Speed $mB_1Z$ Transmission Line Code (고속 $mB_1Z$ 전송로부호에 관한 연구)

  • 유봉선;원동호;김병찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.347-356
    • /
    • 1987
  • This paper is to propose a new line code suitable for a high speed unipolar pulse transmission system, such as a high speed optical digital transmission system. The original information speed can be converted into the transmission speed $\frac{(m+1)}{m}$ by the speed converter. Then this code, named mBiZ code, is generated by means of an Exclusive NOR between the bit stream inserted a space into every m bits and the bit stream delayed by the time slot allocated a single bit at the output coded sequence. Therefore, a mBiZ code can reduce a redundancy in the line code for transmission and its conversion circuits can be devised easily. The mBiZ code can also suppress undesirable long consecuitive identical digits and make line code balance in the mark and space ratio. Therefore, high frequency and low frequency components in power spectrum of a mBiZ code can be suppessed.

  • PDF

Forest Canopy Density Estimation Using Airborne Hyperspectral Data

  • Kwon, Tae-Hyub;Lee, Woo-Kyun;Kwak, Doo-Ahn;Park, Tae-Jin;Lee, Jong-Yoel;Hong, Suk-Young;Guishan, Cui;Kim, So-Ra
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.297-305
    • /
    • 2012
  • This study was performed to estimate forest canopy density (FCD) using airborne hyperspectral data acquired in the Independence Hall of Korea in central Korea. The airborne hyperspectral data were obtained with 36 narrow spectrum ranges of visible (Red, Green, and Blue) and near infrared spectrum (NIR) scope. The FCD mapping model developed by the International Tropical Timber Organization (ITTO) uses vegetation index (VI), bare soil index (BI), shadow index (SI), and temperature index (TI) for estimating FCD. Vegetation density (VD) was calculated through the integration of VI and BI, and scaled shadow index (SSI) was extracted from SI after the detection of black soil by TI. Finally, the FCD was estimated with VD and SSI. For the estimation of FCD in this study, VI and SI were extracted from hyperspectral data. But BI and TI were not available from hyperspectral data. Hyperspectral data makes the numerous combination of each band for calculating VI and SI. Therefore, the principal component analysis (PCA) was performed to find which band combinations are explanatory. This study showed that forest canopy density can be efficiently estimated with the help of airborne hyperspectral data. Our result showed that most forest area had 60 ~ 80% canopy density. On the other hand, there was little area of 10 ~ 20% canopy density forest.