• Title/Summary/Keyword: bi-directional seismic analysis

Search Result 26, Processing Time 0.017 seconds

Dynamic Responses of Multi-Span Simply Supported Bridges under Bi-Directional Seismic Excitations (2방향 지진하중을 받는 다경간 단순교의 동적거동분석)

  • Lee, Sang-Woo;Kim, Sang-Hyo;Mha, Ho-Seong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.21-32
    • /
    • 2004
  • A Seismic analysis procedure of bi-directional brideg motions is developed by using mechanical bridge model. A three-dimensional mechanical model can consider major phenomena under bi-directional seismic excitations, such as nonlinear pier motion under biaxial bending, pounding and bearing damage due to the rotaion of the superstructure, etc. The analyses utilizing the uni-directional and the bi-directional bridge model for the 3-span simply supported bridge are then performed. The seismic responses in two cases are examined and compared by investigating the relative displacements of each superstructure to both ground and adjacent superstructures and the restoring forces of RC pier. The analysis using either the uni-directional model or bi-directional model is acceptable for estimating the displacement responses of a bridge, but the bi-directional analysis is found to give more conservative results for resisting forces of RC piers. To make general conclusions, therefore, the analysis using the bi-directional bridge model should be performed in evaluating the seismic safety of bridges.

Implications of bi-directional interaction on seismic fragilities of structures

  • Pramanik, Debdulal;Banerjee, Abhik Kumar;Roy, Rana
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.101-126
    • /
    • 2016
  • Seismic structural fragility constitutes an important step for performance based seismic design. Lateral load-resisting structural members are often analyzed under one component base excitation, while the effect of bi-directional shaking is accounted per simplified rules. Fragility curves are constructed herein under real bi-directional excitation by a simple extension of the conventional Incremental Dynamic Analysis (IDA) under uni-directional shaking. Simple SODF systems, parametrically adjusted to different periods, are examined under a set of near-fault and far-fault excitations. Consideration of bi-directional interaction appears important for stiff systems. Further, the study indicates that the peak ground accelertaion, velocity and displacement (PGA, PGV and PGD) of accelerogram are relatively stable and efficient intensity measures for short, medium and long period systems respectively. '30%' combination rule seems to reasonably predict the fragility under bi-directional shaking at least for first mode dominated systems dealt herein up to a limit state of damage control.

Seismic Response Investigation of Traffic Signal-Supporting Structures Including Soil-Foundation Effects (지반-기초 영향을 고려한 교통신호등주의 지진응답 분석)

  • Kim, Taehyeon;Jeon, Jong-Su;Roh, Hwasung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.237-244
    • /
    • 2023
  • This study analyzes the seismic response of traffic light poles, considering soil-foundation effects through nonlinear static and time history analyses. Two poles are investigated, uni-directional and bi-directional, each with 9 m mast arms. Finite element models incorporate the poles, soil, and concrete foundations for analysis. Results show that the initial stiffness of the traffic light poles decreases by approximately 38% due to soil effects, and the drift ratio at which their nonlinear behavior occurs is 77% of scenarios without considering soil effects. The maximum acceleration response increases by about 82% for uni-directional poles and 73% for bi-directional poles, while displacement response increases by approximately 10% for uni-directional and 16% for bi-directional poles when considering soil-foundation effects. Additionally, increasing ground motion intensity reduces soil restraints, making significant rotational displacement the dominant response mechanism over flexural displacement for the traffic light poles. These findings underscore the importance of considering soil-foundation interactions in analyzing the seismic behavior of traffic light poles and provide valuable insights to enhance their seismic resilience and safety.

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

Investigation of Seismic Responses of Single- and Bi-Directional Traffic Light Poles (단방향 및 양방향 교통신호등주의 지진응답 분석)

  • Kim, Taehyeon;Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.219-226
    • /
    • 2022
  • The seismic responses of traffic light poles are investigated using a finite element analysis. Among the traffic light poles, single- and bi-directional traffic light poles are considered since such poles are frequently installed on vehicle roads. For a more detailed investigation, three different lengths of the mast arm are considered for each directional pole. For a time-history analysis, six actual and two artificial earthquakes are considered and applied to each direction of the poles (x and y) to investigate which direction input provides more significant responses due to the unsymmetrical structural shape. Herein, the x and y directions are respectively parallel and perpendicular based on the single mast pole case. From the analysis results, the average maximum displacement response is developed with the x-direction input case for both types of light poles. Also, the bi-directional traffic light poles show a 13% larger response than the single-directional traffic light poles. Even though the y-direction input case produces a smaller response, the response difference between the single- and bi-directional light poles considerably increases by about 60%. The average maximum acceleration responses are almost similar for both types of light poles.

Dynamic Behavior Analysis of a Bridge Considering Nonlinearity of R/C Piers under Bi-Directional Seismic Excitations (R/C 교각의 비선형성을 고려한 교량시스템의 2방향 지진거동분석)

  • 김상효;마호성;이상우;강정운
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.353-360
    • /
    • 2001
  • An analysis procedure of 2-dimensional bridge dynamics has been developed by using force-deformation model, which simulates the pier motion under biaxial bending due to the bi-directional input seismic excitations. A three-dimensional mechanical model is utilized, which can consider the other major phenomena such as pounding, rotation of the superstructure, abutment stiffness degradation, and motions of the foundation motions. The bi-directional dynamic behaviors of the bridge are then examined by investigating the relative displacements of each oscillator to the ground. It is found that the nonlinearity of the pier due to biaxial bending affects the pier motions, but the global bridge behaviors are greatly governed by the pounding phenomena and stiffness degradation of the abutment-backfill system. Especially, the relative displacement of the abutment system (A2) with movable supports to the ground is increased about 30% due to the abutment stiffness degradation.

  • PDF

Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions (수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Analytical and experimental studies show that the dynamic behavior of liquid storage tanks is significantly influenced by the fluid-structure interaction (FSI). The effects of FSI must be rigorously considered for accurate earthquake analysis and seismic design of liquid storage tanks. In this study, a dynamic analysis of a rectangular liquid storage tank subjected to bi-directional earthquake ground motions is performed and its dynamic characteristics are examined, with the effects of FSI rigorously considered. Hydrodynamic pressure is evaluated using the finite-element approach with acoustic elements and applied to the structure. The responses of the rectangular tank subjected to bi-directional earthquake ground motions are thus obtained. It can be observed that the incident angle of bi-directional horizontal ground motions has significant effects on the dynamic responses of the considered system. Therefore, the characteristics of the system must be considered in its seismic design and performance evaluation.

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Rubber bearing isolation for structures prone to earthquake - a cost effectiveness analysis

  • Islam, A.B.M. Saiful;Sodangi, Mahmoud
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.261-272
    • /
    • 2020
  • Recent severe earthquakes in and around the vital public places worldwide indicate the severe vulnerability of ground excitation to be assailed. Reducing the effect of seismic lateral load in structural design is an important conception. Essentially, seismic isolation is required to shield the superstructure in such a way that the building superstructure would not move when the ground is shaking. This study explores the effectiveness, design, and practical feasibility of base isolation systems to reduce seismic demands on buildings of varying elevations. Thus, static and dynamic analyses were conducted based on site-specific bi-directional earthquakes for base-isolated as well as fixed-based buildings. Remarkably, it was discovered that isolators used in low-rise to high-rise structures tend to significantly decrease the structural responses of seismic prone buildings. The higher allowable horizontal displacement induces structural flexibility and ensure good structural health of the building stories. Reinforcement from vertical and horizontal members can be reduced in significant amounts for BI buildings. Thus, although incorporating base isolators increases the initial outlay, it considerably diminishes the total structural cost.

A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea (우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석)

  • Kim, Jung Han;Kim, Jae Kwan;Heo, Tae Min;Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.