• Title/Summary/Keyword: beta-like cells

Search Result 387, Processing Time 0.03 seconds

Effects of Hormones on the Proliferation of Stromal Vascular Cells from Hanwoo Cattle Adipose Tissues

  • Lee, S.C.;Lee, H.J.;Kim, D.W.;Kim, J.W.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.161-166
    • /
    • 2000
  • This study was designed to determine the effects of the insulin-like growth factor (IGF-1) and estradiol $17-{\beta}$ on the in vitro proliferation of stromal vascular cell from Hanwoo omental, subcutaneous, intermuscular and intramuscular adipose tissues. Cells were cultured in M199+20% newborn calf serum and the proliferation of cells was measured by direct microscopic cell counting and change of genomic DNA amount. Cell numbers increased slightly over the first 72 hour of culture and then increased greatly, regardless of adipose tissue depots. In IGF-1 treatment, the number of omental preadipocytes maintained highest level from the beginning to the 20th day of culture. However, in estradiol-$17{\beta}$ treatment, those tended to be lower than the control from the beginning of culture and significantly lower at the 24th day. When IGF-1 was added to subcutaneous preadipocytes, the numbers of cells were higher from 11th day than those from other treatments, although there was no statistical significance. For intermuscular preadipocytes treated with IGF-1, its numbers were significantly (p<0.05) higher at 11th day, and in the other days it showed a similar tendency to those of the subcutaneous tissue. In this experiment, preadipocytes were taken from 24 month old fully matured steers and the highest proliferation rate was shown in intramuscular tissue followed by those of subcutaneous preadipocytes. Addition of $5{\mu}M$ estradiol-$17{\beta}$ to the growth medium failed to promote the replication of Hanwoo preadipocytes, as indicated by direct cell counts and total genomic DNA content. As the culture period proceeded, the amounts of DNA were increased, but the patterns of increment were not consistent with the results of cell numbers.

On the Biological Functions of Equine Chorionic Gonadotropin (말의 융모성 성선자극 호르몬의 생화학적 기능)

  • 민관식;윤종택
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.299-308
    • /
    • 2002
  • In horse, a single gene encodes both eCG and eLH $\beta$ subunits. The difference between eCG and eLH lies in the structure of their glycoresidues, which are both sialylated and sulfated in LH and sialylated in CG eCG consists of highly glycosyiated $\alpha$- and $\beta$-subunits and is an unique member of the gonadotropin family because it elicits response characteristics of both FSH and LH in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of gonadotropin structure-function relationships and the understanding of the molecular bases of the specific interactions of these hormones with their receptors. Thus, eCG is a dintinct molecule from the view points of its biological function and glycoresidue structures. The oligosaccharide at Asn 56 of the $\alpha$-subunit plays an indispensable role, whereas the carboxyl-terminal extension of the eCG $\beta$-subunit with its associated O-linked oligosaccharides is not improtant for, the in vitro LH-like activity of eCG. In contrast, both N- and O-linked oligosaccharides play important roles for FSH-like activity and increase FSH-like activity by removal of N- and O-linked oligosaccharides. Therefore, the dual LH- and FSH-like activities of eCG can be clearly separated by removal of either the N-linked oligosaccharide on the $\alpha$-subunit or CTP-associated O-linked oligosaccharides from its $\beta$-subunit. The glycoresidues seem to play crucial roles fer biological activities. The tethered-eCG was effciently secreted and showed similar LH-like activity to the dimeric eCG $\alpha$/ $\beta$ and native eCG. FSH-like activity of the tethered-eCG was also shown similarly in comparison with the native and wild type eCG $\alpha$/ $\beta$. Our data for the first time suggest that the tethered-eCG can be expressed efficiently and the produced product by the CHO-Kl cells is fully LH- and FSH-like activities in rat in vitro bioassay system. Our results also suggest that this molecular can imply particular models ot FSH-like activity not LH-like activity in the eCG. Taken together, these data indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion.

Physiological Functions of the COPI Complex in Higher Plants

  • Ahn, Hee-Kyung;Kang, Yong Won;Lim, Hye Min;Hwang, Inhwan;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.866-875
    • /
    • 2015
  • COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed ${\alpha}-$, ${\beta}-$, ${\beta}^{\prime}-$, ${\gamma}-$, ${\delta}-$, ${\varepsilon}-$, and ${\zeta}$-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ${\beta}^{\prime}$-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.

Effects of Interleukin-$1\beta$, Tumor Necrosis Factor-$\alpha$ and Interferon-$\gamma$ on the Nitric Oxide Production and Osteoclast Generation in the Culture of Mouse Bone Marrow Cells

  • Kwon, Young-Man;Kim, Se-Won;Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.67-72
    • /
    • 2006
  • Nitric oxide(NO) is a labile, uncharged, reactive radical that functions as a sensitive mediator of intercellular communication in diverse tissues. It has been reported that NO is produced by osteoblast and these results may suggest that NO is integrally involved in the regulation of osteoclast formation and osteoclast resorption activity by osteoblastic cells. We examined the effect of cytokines on NO release by mouse bone marrow cell. We also examined the effects of cytokines and sodium nitroprusside(SNP) on the formation of osteoclast-like cell from mouse bone marrow cells in culture. Cytokines stimulated NO production of mouse bone marrow cells, and N-nitro-L-arginine methyl ester, a specific inhibitor of NO synthase, suppressed the cytokine-induced NO production. SNP showed dual action in the generation of osteoclasts. The addition of $30{\mu}M$ SNP inhibited the formation of tartrate resistant acid phosphatase(TRAP)(+) multinucleated cell, whereas lower concentration($3{\mu}M$) of SNP enhanced it. Although the precise action of NO remains to be elucidated in detail, the action of NO in osteoclast generation in our studies seems to be associated, at least in part, with bone metabolism and bone pathophysiology.

Functional Cardiomyocytes Formation Derived from Mouse Embryonic Stem Cells

  • Shin, Hyun-Ah;Lee, Keum-Sil;Cho, Hwang-Yoon;Park, Sae-Young;Kim, Eun-Young;Lee, Young-Jae;Park, Se-Pill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.100-100
    • /
    • 2003
  • Pluripotent embryonic stem (ES) cells differentiate spontaneously into beating cardiomyocytes via embryo-like aggregates. We describe the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. To induce cardiomyocytic differentiation, mES03 cells were dissociated and allowed to aggregate (EB formation) at the presence of 0 75% dimethyl sulfoxide (DMSO) for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EBs were plated onto gelatin-coated dish for differentiation. Spontaneously contracting colonies which appeared in approximately 4-5 days upon differentiation. Expression of cardiac-specific genes were determined by RT-PCR. Rebust expression of myosin light chain (MLC-2V), cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta(\beta$-MHC), cardiac transcription factor GATA4 and skeletal muscle-specific ${\alpha}_1$-subunit of the L-type calcium channel (${\alpha}_1 CaCh_{sm}$) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel (${\alpha}_1$CaCh) were revealed at a low level. Strikingly, the expression of atrial natriuretic factor (ANF) was not detected. When spontaneous contracting cell masses were examined their electrophysiological features by patch-clamp technique, it showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes displayed biochemical and electrophysiological properties of cardiomyocytes and DMSO enhanced development of cardiomyocytes in 4+/4- method.

  • PDF

Up-regulation of Insulin-like Growth Factor Binding Protein-3 Is Associated with Brain Metastasis in Lung Adenocarcinoma

  • Yang, Lishi;Li, Junyang;Fu, Shaozhi;Ren, Peirong;Tang, Juan;Wang, Na;Shi, Xiangxiang;Wu, Jingbo;Lin, Sheng
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.321-332
    • /
    • 2019
  • The brain is the most common metastatic site of lung adenocarcinoma; however, the mechanism of this selective metastasis remains unclear. We aimed to verify the hypothesis that exposure of tumor cells to the brain microenvironment leads to changes in their gene expression, which promotes their oriented transfer to the brain. A549 and H1299 lung adenocarcinoma cells were exposed to human astrocyte-conditioned medium to simulate the brain microenvironment. Microarray analysis was used to identify differentially expressed genes, which were confirmed by quantitative real-time PCR and western blotting. Knockdown experiments using microRNAs and the overexpression of genes by cell transfection were performed in addition to migration and invasion assays. In vitro findings were confirmed in clinical specimens using immunohistochemistry. We found and confirmed a significant increase in insulin-like growth factor binding protein-3 (IGFBP3) levels. Our results also showed that the up-regulation of IGFBP3 promoted A549 cell epithelial-mesenchymal transition, migration, and invasion, while the knockdown of IGFBP3 resulted in decreased cell motility. We also found that Transforming growth factor-${\beta}$ (TGF-${\beta}$)/Mothers against decapentaplegic homolog 4 (Smad4)-induced epithelial-mesenchymal transition was likely IGFBP3-dependent in A549 cells. Finally, expression of IGFBP3 was significantly elevated in pulmonary cancer tissues and intracranial metastatic tissues. Our data indicate that up-regulation of IGFBP3 might mediate brain metastasis in lung adenocarcinoma, which makes it a potential therapeutic target.

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.

The Effect of $17{\beta}-Estradiol$ on the Gene Expression of IGF-I and Bone Matrix Protein in the Osteoblast-Like Cell (골아세포의 IGF-I 유전자 발현 및 골기질 단백질에 대한 $17{\beta}-estradiol$의 영향)

  • Yang, Won-Suk;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.375-390
    • /
    • 2000
  • The purpose of this study is to evaluate the expression ofIGF-I, considered as the mediator of action of estrogen, and IGF-IA and IGF-IB, alternative slicing form of IGF-I, using $17{\beta}-estradiol$ in MC3T3-E1 cells. We observed the effect on type I collagen and osteopontin gene expression and DNA synthetic activity of MC3T3-E1 cells, added by estrogen, IGF-I and combination and the interactionon proliferation and differentiation of MC3T3-E1 cells. The results were as follows :RT-PCR experiment for observing timedependantIGF-I gene expression patternshowed IGF-IA and IB gene expression in both of control and test group. In these IGF-IA gene expression was appeared predominantly. In control, IGF-I geneexpression level was maintained until 24hr and then decreased gradually. In testgroup, IGF-I gene expression level increased as time goes by. Experiment measuring DNA synthetic activity, as it is added by $17{\beta}-estradiol$, IGF-I and combination, showed that first day , there was the tendency of more increase of synthetic activity in all test group than control but no statical significance(P>0.05), and third day, there was more increase of DNA synthetic activity in $17{\beta}-estradiol$ group and combination group and it was statically significant. (P<0.005) Experiment for observing type I collagen gene expression pattern showed more increase of expression in $17{\beta}-estradiol$ group than control and no significant difference in IGF-I group and combination group. Experiment for observing osteopontin gene expression pattern showed no significant difference in control and test group. In conclusion, $17{\beta}-estradiol$ in MC3T3- E1 cells increased IGF-I gene and DNA synthetic activity simultaneously, therefore it appeared that IGF-I is related to the action of estrogen. Combination treatment of IGF-I and $17{\beta}-estradiol$ has effect on cell proliferation but this effect is lower than IGF-I or $17{\beta}-estradiol$ alone. However, combination treatment has not great effect on type I collagen or osteopontin gene expression thus little effect of cell differentiation.

  • PDF

Proliferative Effects of Flavan-3-ols and Propelargonidins from Rhizomes of Drynaria fortunei on MCF-7 and Osteoblastic Cells

  • Chang, Eun-Ju;Lee, Won-Jung;Cho, Sung-Hee;Choi, Sang-Won
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.620-630
    • /
    • 2003
  • The proliferative effects of thirty Oriental medicinal herbs on MCF-7 (estrogen-sensitive breast cancer cell line) and ROS 17/2.8 osteoblast-like cells were determined using the MTT assay. Methanol extracts from several herbs was found to show proliferative activity on the above two cell lines in the range of 5 to 100 $\mu$g/mL. Among these active herbs, the methanol extract from the rhizomes of Drynaria fortunei showed the most potent proliferative activity, and the cell proliferations were significantly increase by 136 and 158% in the MCF-7 and ROS 17/2.8 cells, respectively, when treated with 100 $\mu$ g/mL. Through a bioassay-guided separation, eight flavonoids, including four new flavan-3-ols and two propelargonidins, together with the known (-)-epiafzelechin and naringin, were isolated. Their chemical structures were characterized as (-)-epiafzelechin (1), (-)-epiafzelechin-3-O-$\beta$-D-allopyranoside (2), (-)-epiafzelechin-3-O-(6"-O-acetyl)-$\beta$-D-allopyranoside (3), 4$\beta$-carboxymethyl-(-)-epiafzelechin methyl ester (4), 4$\beta$-car-boxymethyl-(-)-epiafzelechin sodium salt (5), naringin (6), (-)-epiafzelechin-(4$\beta$\rightarrow8)-4$\beta$-car-boxymethylepiafzelechin methyl ester (7) and (-)-epiafzelechin-($4\beta\rightarrow8, 2\beta\rightarrowΟ\rightarrow7)-epiafzelechin-(4\beta\righarrow8)-epiafzelechin (8) by extensive 1D and 2D NMR spectroscopy. Most of these flavonoids, in the range of $10^{-15}∼10^{-6}$ M, accelerated the proliferation of MCF-7 cell, with compounds 7 and 8, in the range of $10^{-15}∼10^{-12}$ M, showing especially potent proliferation effects. Meanwhile, seven flavonoids, with the exception of compound 4, stimulated the proliferation of ROS 17/2.8 cells in the range of $10^{-15}∼10^{-6}$ M, with compounds 5-8 especially accelerating the proliferation, in dose-dependent manners ($10^{-15}∼10^{-9}$ M), and their proliferative effect was much stronger than that of $E_2$ and genistein. These results suggest that propelargonidin dimers and trimers isolated from the rhizomes of Drynaria fortunei may be useful as potential phytoestrogens, which play important physiological roles in the prevention of postmenopausal osteoporosis.

The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

  • Kim, Mijie;Park, Yong Joo;Ahn, Huiyeon;Moon, Byeonghak;Chung, Kyu Hyuck;Oh, Seung Min
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.10.1-10.8
    • /
    • 2016
  • Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and $17{\beta}$-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases ($3{\beta}$-HSD2 and $17{\beta}$-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and $100{\mu}g/mL$) showed a significant decrease in $17{\beta}$-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and $17{\beta}$-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and $17{\beta}$-HSD1, and lead to a decrease in $17{\beta}$-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer.