DOI QR코드

DOI QR Code

Physiological Functions of the COPI Complex in Higher Plants

  • Ahn, Hee-Kyung (Department of Systems Biology, Yonsei University) ;
  • Kang, Yong Won (Department of Systems Biology, Yonsei University) ;
  • Lim, Hye Min (Department of Systems Biology, Yonsei University) ;
  • Hwang, Inhwan (Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Pai, Hyun-Sook (Department of Systems Biology, Yonsei University)
  • Received : 2015.05.04
  • Accepted : 2015.07.06
  • Published : 2015.10.31

Abstract

COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed ${\alpha}-$, ${\beta}-$, ${\beta}^{\prime}-$, ${\gamma}-$, ${\delta}-$, ${\varepsilon}-$, and ${\zeta}$-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ${\beta}^{\prime}$-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.

Keywords

References

  1. Ahn, C.S., Han, J.A., Lee, H.S., Lee, S., and Pai, H.-S. (2011). The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23, 185-209. https://doi.org/10.1105/tpc.110.074005
  2. Avila-Ospina, L., Moison, M., Yoshimoto, K., and Masclaux- Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. J. Exp. Bot. 65, 3799-3811. https://doi.org/10.1093/jxb/eru039
  3. Assaad, F.F. (2001). Plant cytokinesis. Exploring the links. Plant Physiol. 126, 509-516. https://doi.org/10.1104/pp.126.2.509
  4. Bassham, D.C. (2007). Plant autophagy-more than a starvation response. Curr. Opin. Plant Biol. 10, 587-593. https://doi.org/10.1016/j.pbi.2007.06.006
  5. Bassham, D.C., Brandizzi, F., Otegui, M.S., and Sanderfoot, A.A. (2008). The secretory system of Arabidopsis. The Arabidopsis Book 6, e0116 https://doi.org/10.1199/tab.0116
  6. Beck, R., Rawet, M., Wieland, F.T., and Cassel, D. (2009). The COPI system: molecular mechanisms and function. FEBS Lett. 583, 2701-2709. https://doi.org/10.1016/j.febslet.2009.07.032
  7. Berry, D.L., and Baehrecke, E.H. (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137-1148. https://doi.org/10.1016/j.cell.2007.10.048
  8. Boutté, Y., Frescatada-Rosa, M., Men, S., Chow, C.M., Ebine, K., Gustavsson, A., Johansson, L., Ueda, T., Moore, I., Jürgens, G., et al. (2009). Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J. 29, 546-558.
  9. Burch-Smith, T.M., Schiff, M., Liu, Y., and Dinesh-Kumar, S.P. (2006). Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142, 21-27. https://doi.org/10.1104/pp.106.084624
  10. Couchy, I., Bolte, S., Crosnier, M.T., Brown, S., and Satiat- Jeunemaitre, B. (2003). Identification and localization of a beta-COP-like protein involved in the morphodynamics of the plant Golgi apparatus. J. Exp. Bot. 54, 2053-2063. https://doi.org/10.1093/jxb/erg230
  11. Coutinho, P., Parsons, M.J., Thomas, K.A., Hirst, E.M., Saude, L., Campos, I., Williams, P.H., and Stemple, D.L. (2004). Differential requirements for COPI transport during vertebrate early development. Dev. Cell 7, 547-558. https://doi.org/10.1016/j.devcel.2004.07.020
  12. Darenfed, H., and Mandato, C.A. (2005). Wound-induced contractile ring: a model for cytokinesis. Biochem. Cell Biol. 83, 711-720. https://doi.org/10.1139/o05-164
  13. Day, K.J., Staehelin, L.A., and Glick, B.S. (2013). A three-stage model of Golgi structure and function. Histochem. Cell. Biol. 140, 239-249. https://doi.org/10.1007/s00418-013-1128-3
  14. Denton, D., Shravage, B., Simin, R., Mills, K., Berry, D.L., Baehrecke, E.H., and Kumar, S. (2009). Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 19, 1741-1746. https://doi.org/10.1016/j.cub.2009.08.042
  15. Dhonukshe, P., Baluska, F., Schlicht, M., Hlavacka, A., Samaj, J., Friml, J., and Gadella, T.W. Jr. (2006). Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell 10, 137-150. https://doi.org/10.1016/j.devcel.2005.11.015
  16. Donaldson, J.G., Finazzi, D., and Klausner, R.D. (1992). Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360, 350-352. https://doi.org/10.1038/360350a0
  17. Donohoe, B.S., Kang, B.H., and Staehelin, L.A. (2007). Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc. Natl. Acad. Sci. USA 104, 163-168. https://doi.org/10.1073/pnas.0609818104
  18. Faso, C., Boulaflous, A., and Brandizzi, F. (2009). The plant Golgi apparatus:last 10 years of answered and open questions. FEBS Lett. 583, 3752-3757. https://doi.org/10.1016/j.febslet.2009.09.046
  19. Frigerio, L., Hinz, G., and Robinson, D.G. (2008). Multiple vacuoles in plant cells:rule or exception? Traffic 9, 1564-1570. https://doi.org/10.1111/j.1600-0854.2008.00776.x
  20. Gao, C., Yu, C.K., Qu, S., San, M.W., Li, K.Y., Lo, S.W., and Jiang, L. (2012). The Golgi-localized Arabidopsis endomembrane protein12 contains both endoplasmic reticulum export and Golgi retention signals at its C terminus. Plant Cell 24, 2086-2104. https://doi.org/10.1105/tpc.112.096057
  21. Gao, C., Cai, Y., Wang, Y., Kang, B.H., Aniento, F., Robinson, D.G., and Jiang, L. (2014). Retention mechanisms for ER and Golgi membrane proteins. Trends Plant Sci. 19, 508-515. https://doi.org/10.1016/j.tplants.2014.04.004
  22. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493-501. https://doi.org/10.1083/jcb.119.3.493
  23. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., and Jurgens, G. (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219-230. https://doi.org/10.1016/S0092-8674(03)00003-5
  24. Gu, F., Aniento, F., Parton, R.G., and Gruenberg, J. (1997). Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J. Cell Biol. 139, 1183-1195. https://doi.org/10.1083/jcb.139.5.1183
  25. Gunning, B.E., and Wick, S.M. (1985). Preprophase bands, phragmoplasts, and spatial control of cytokinesis. J. Cell Sci. 2, 157-179.
  26. Guo, Q., Vasile, E., and Krieger, M. (1994). Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COP. J. Cell Biol. 125, 1213-1224. https://doi.org/10.1083/jcb.125.6.1213
  27. Hanaoka, H., Noda T., Shirano, Y., Kato T., Hayashi H., Shibata D., Tabata S., and Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193. https://doi.org/10.1104/pp.011024
  28. Hara-Kuge, S., Kuge, O., Orci, L., Amherdt, M., Ravazzola, M., Wieland, F.T., and Rothman, J.E. (1994). En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J. Cell Biol. 124, 883-892. https://doi.org/10.1083/jcb.124.6.883
  29. Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., Jorgensen, L.B., Jones, J.D., Mundy, J., and Petersen, M. (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773-783. https://doi.org/10.1016/j.cell.2009.02.036
  30. Hofius, D., Munch, D., Bressendorff, S., Mundy, J., and Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ. 18, 1257-1262. https://doi.org/10.1038/cdd.2011.43
  31. Huotari, J., and Helenius, A. (2011). Endosome maturation. EMBO J. 30, 3481-3500. https://doi.org/10.1038/emboj.2011.286
  32. Ito, E., Fujimoto, M., Ebine, K., Uemura, T., Ueda, T., and Nakano, A. (2012). Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J. 69, 204-216. https://doi.org/10.1111/j.1365-313X.2011.04782.x
  33. Jackson, L.P. (2014). Structure and mechanism of COPI vesicle biogenesis. Curr. Opin. Cell Biol. 29, 67-73. https://doi.org/10.1016/j.ceb.2014.04.009
  34. Jackson, L.P., Lewis, M., Kent, H.M., Edeling, M.A., Evans, P.R., Duden, R., and Owen, D.J. (2012). Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev. Cell 23, 1255-1262. https://doi.org/10.1016/j.devcel.2012.10.017
  35. Jurgens, G. (2004). Membrane trafficking in plants. Annu. Rev. Cell Dev. Biol. 20, 481-504. https://doi.org/10.1146/annurev.cellbio.20.082503.103057
  36. Jurgens, G. (2005a). Cytokinesis in higher plants. Annu. Rev. Plant. Biol. 56, 281-299. https://doi.org/10.1146/annurev.arplant.55.031903.141636
  37. Jurgens, G. (2005b). Plant cytokinesis:fission by fusion. Trends Cell Biol. 15, 277-283. https://doi.org/10.1016/j.tcb.2005.03.005
  38. Kang, Y.W., Lee, J.Y., Jeon, Y., Cheong, G.W., Kim, M., and Pai, H.-S. (2010). In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana. Plant Mol. Biol. 72, 569-583. https://doi.org/10.1007/s11103-009-9593-8
  39. Kang, Y.W., Jeon, Y., and Pai, H.-S. (2012). Characterization of cell death induced by NbBPS1 silencing in Nicotiana benthamiana. Mol. Cells 34, 185-191. https://doi.org/10.1007/s10059-012-0096-0
  40. Kim, M., Lim, J.H., Ahn, C.S., Park, K., Kim, G.T., Kim, W.T., and Pai, H.-S. (2006). Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18, 2341-2355. https://doi.org/10.1105/tpc.106.041509
  41. Kitazawa, D., Yamaguchi, M., Mori, H., and Inoue, Y.H. (2012). COPI-mediated membrane trafficking is required for cytokinesis in Drosophila male meiotic divisions. J. Cell Sci. 125, 3649-3660. https://doi.org/10.1242/jcs.103317
  42. Kwon, S.I., Cho, H.J., Jung, J.H., Yoshimoto, K., Shirasu, K., and Park, O.K. (2010). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J. 64, 151-164.
  43. Lam, E., Kato, N., and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848-853. https://doi.org/10.1038/35081184
  44. Lee, M.C.S., Miller, E.A., Goldberg, J., Orci, L., and Schekman, R. (2004). Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87-123. https://doi.org/10.1146/annurev.cellbio.20.010403.105307
  45. Lee, J.Y., Sarowar, S., Kim, H.S., Kim, H., Hwang, I., Kim, Y.J., and Pai, H.-S. (2013). Silencing of Nicotiana benthamiana Neuroblastoma-Amplified Gene causes ER stress and cell death. BMC Plant Biol. 13, 69. https://doi.org/10.1186/1471-2229-13-69
  46. Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577. https://doi.org/10.1016/j.cell.2005.03.007
  47. Lum, J.J., DeBerardinis, R.J., and Thompson, C.B. (2005). Autophagy in metazoans:cell survival in the land of plenty. Nat. Rev. Mol. Cell Biol. 6, 439-448. https://doi.org/10.1038/nrm1660
  48. McFarlane, H.E., Watanabe, Y., Yang, W., Huang, Y., Ohlrogge, J., and Samuels, A.L. (2014). Golgi- and trans-Golgi networkmediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol. 164, 1250-1260. https://doi.org/10.1104/pp.113.234583
  49. McMichael, C.M., and Bednarek, S.Y. (2013). Cytoskeletal and membrane dynamics during higher plant cytokinesis. New Phytol. 197, 1039-1057. https://doi.org/10.1111/nph.12122
  50. Min, M.K., Jang, M., Lee, M., Lee, J., Song, K., Lee, Y., Choi, K.Y., Robinson, D.G., and Hwang, I. (2013). Recruitment of Arf1- GDP to Golgi by Glo3p-type ArfGAPs is crucial for golgi maintenance and plant growth. Plant Physiol. 161, 676-691. https://doi.org/10.1104/pp.112.209148
  51. Montesinos, J.C., Pastor-Cantizano, N., Robinson, D.G., Marcote, M.J., and Aniento, F. (2014). Arabidopsis p24delta5 and p24delta9 facilitate Coat Protein I-dependent transport of the K/HDEL receptor ERD2 from the Golgi to the endoplasmic reticulum. Plant J. 80, 1014-1030. https://doi.org/10.1111/tpj.12700
  52. Nebenführ, A., Frohlick, J.A., and Staehelin, L.A. (2000). Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiol. 124, 135-151. https://doi.org/10.1104/pp.124.1.135
  53. Nelson, B.K., Cai X., and Nebenführ A. (2007). A multi-color set of in vivo organelle markers for colocalization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136. https://doi.org/10.1111/j.1365-313X.2007.03212.x
  54. Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H., Asada, T., Irie, K., Ito, M., Terada, M., Banno, H., et al. (2002). Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87-99. https://doi.org/10.1016/S0092-8674(02)00691-8
  55. Papanikou, E., and Glick, B.S. (2014). Golgi compartmentation and identity. Curr. Opin. Cell Biol. 29, 74-81. https://doi.org/10.1016/j.ceb.2014.04.010
  56. Paul, M.J., and Frigerio, L. (2007). Coated vesicles in plant cells. Semin. Cell Dev. Biol. 18, 471-478. https://doi.org/10.1016/j.semcdb.2007.07.005
  57. Pimpl, P., Movafeghi, A., Coughlan, S., Denecke, J., Hillmer, S., and Robinson, D.G. (2000). In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12, 2219-2236. https://doi.org/10.1105/tpc.12.11.2219
  58. Ratcliff, F., Martin-Hernandez, A.M., and Baulcombe, D.C. (2001). Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25, 237-245.
  59. Razi, M., Chan, E.Y., and Tooze, S.A. (2009). Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185, 305-321. https://doi.org/10.1083/jcb.200810098
  60. Reape, T.J., and McCabe, P.F. (2008). Apoptotic-like programmed cell death in plants. New Phytol. 180, 13-26. https://doi.org/10.1111/j.1469-8137.2008.02549.x
  61. Reichardt, I., Stierhof, Y.-D., Mayer, U., Richter, S. Schwarz, H., Schumacher, K., and Jürgens, G. (2007). Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr. Biol. 17, 2047-2053. https://doi.org/10.1016/j.cub.2007.10.040
  62. Reilly, B.A., Kraynack, B.A., VanRheenen, S.M., and Waters, M.G. (2001). Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Mol. Biol. Cell 12, 3783-3796. https://doi.org/10.1091/mbc.12.12.3783
  63. Ritzenthaler, C., Nebenführ, A., Movafeghi, A., Stussi-Garaud, C., Behnia, L., Pimpl, P., Staehelin, L.A., and Robinson, D.G. (2002). Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14, 237-261. https://doi.org/10.1105/tpc.010237
  64. Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937-946. https://doi.org/10.1105/tpc.10.6.937
  65. Shin, K.D., Lee, H.N., and Chung, T. (2014). A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol. Cells 37, 399-405. https://doi.org/10.14348/molcells.2014.0042
  66. Song, J., Lee, M.H., Lee, G.J., Yoo, C.M., and Hwang, I. (2006). Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. Plant Cell 18, 2258-2274. https://doi.org/10.1105/tpc.105.039123
  67. Song, K., Jang, M., Kim, S.Y., Lee, G., Lee, G.J., Kim, D.H., Lee, Y., Cho, W., and Hwang, I. (2012). An A/ENTH domaincontaining protein functions as an adaptor for clathrin-coated vesicles on the growing cell plate in Arabidopsis root cells. Plant Physiol. 159, 1013-1025. https://doi.org/10.1104/pp.112.199380
  68. Staehelin, L.A., and Hepler, P.K. (1996). Cytokinesis in higher plants. Cell 84, 821-824. https://doi.org/10.1016/S0092-8674(00)81060-0
  69. Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880-885. https://doi.org/10.1038/sj.embor.7400779
  70. Urade, R. (2009). The endoplasmic reticulum stress signaling pathways in plants. Biofactors 35, 326-331. https://doi.org/10.1002/biof.45
  71. Van Damme, D., Coutuer, S., De Rycke, R., Bouget, F.Y., Inze, D., and Geelen, D. (2006). Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell 18, 3502-3518. https://doi.org/10.1105/tpc.106.040923
  72. Van Damme, D., Inze, D., and Russinova, E. (2008). Vesicle trafficking during somatic cytokinesis. Plant Physiol. 147, 1544-1552. https://doi.org/10.1104/pp.108.120303
  73. Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., et al. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428-438. https://doi.org/10.1111/j.1365-313X.2004.02219.x
  74. Watanabe, N., and Lam, E. (2008). BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J. Biol. Chem. 283, 3200-3210. https://doi.org/10.1074/jbc.M706659200
  75. Whitney, J.A., Gomez, M., Sheff, D., Kreis, T.E., and Mellman, I. (1995). Cytoplasmic coat proteins involved in endosome function. Cell 83, 703-713. https://doi.org/10.1016/0092-8674(95)90183-3
  76. Xiong, Y., Contento, A.L., and Bassham, D.C. (2005). AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 42, 535-546. https://doi.org/10.1111/j.1365-313X.2005.02397.x
  77. Yasuhara, H. (2005). Caffeine inhibits callose deposition in the cell plate and the depolymerization of microtubules in the central region of the phragmoplast. Plant Cell Physiol. 46, 1083-1092. https://doi.org/10.1093/pcp/pci121
  78. Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., and Shirasua, K. (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914-2927. https://doi.org/10.1105/tpc.109.068635
  79. Yu, X., Breitman, M., and Goldberg, J. (2012). A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes. Cell 148, 530-542. https://doi.org/10.1016/j.cell.2012.01.015
  80. Zerangue, N., Malan, M.J., Fried, S.R., Dazin, P.F., Jan, Y.N., Jan, L.Y., and Schwappach, B. (2001). Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 2431-2436. https://doi.org/10.1073/pnas.051630198

Cited by

  1. Quantitative proteomic changes in development of superficial scald disorder and its response to diphenylamine and 1-MCP treatments in apple fruit vol.123, 2017, https://doi.org/10.1016/j.postharvbio.2016.08.005
  2. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense vol.12, pp.2, 2017, https://doi.org/10.1080/15592324.2016.1274481
  3. α2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth 2016, https://doi.org/10.1093/jxb/erw446
  4. Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2 vol.19, pp.7, 2017, https://doi.org/10.1111/cmi.12727
  5. Protein secretion in plants: conventional and unconventional pathways and new techniques 2017, https://doi.org/10.1093/jxb/erx262
  6. Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway pp.1432-2048, 2018, https://doi.org/10.1007/s00425-018-3024-5
  7. The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization pp.1432-2048, 2018, https://doi.org/10.1007/s00425-018-3000-0
  8. Functional characterization of chaperonin containing T-complex polypeptide-1 and its conserved and novel substrates in Arabidopsis vol.70, pp.10, 2015, https://doi.org/10.1093/jxb/erz099
  9. Loss of Arabidopsis β-COP Function Affects Golgi Structure, Plant Growth and Tolerance to Salt Stress vol.11, pp.None, 2020, https://doi.org/10.3389/fpls.2020.00430
  10. The in vivo functions of ARPF2 and ARRS1 in ribosomal RNA processing and ribosome biogenesis in Arabidopsis vol.71, pp.9, 2015, https://doi.org/10.1093/jxb/eraa019
  11. COPI complex isoforms are required for the early acceptance of compatible pollen grains in Arabidopsis thaliana vol.33, pp.2, 2015, https://doi.org/10.1007/s00497-020-00387-9
  12. ß-COP mutants show specific high sensitivity to chloride ions vol.16, pp.3, 2015, https://doi.org/10.1080/15592324.2020.1858629
  13. Contribution of marine macroalgae genes to plant potassium deficiency tolerance in transgenic Arabidopsis vol.15, pp.3, 2015, https://doi.org/10.1007/s11816-021-00680-7
  14. The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene- and jasmonic acid-induced genes in plant immunity vol.187, pp.4, 2021, https://doi.org/10.1093/plphys/kiab437