DOI QR코드

DOI QR Code

N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons

  • Islam, Md. Ariful (Department of Anatomy, College of Medicine Dongguk University) ;
  • Sharif, Syeda Ridita (Department of Anatomy, College of Medicine Dongguk University) ;
  • Lee, HyunSook (Dongguk Medical Institute, College of Medicine Dongguk University) ;
  • Moon, Il Soo (Department of Anatomy, College of Medicine Dongguk University)
  • Received : 2015.05.07
  • Accepted : 2015.08.05
  • Published : 2015.10.31

Abstract

N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.

Keywords

References

  1. Ahmad, F.J., He, Y., Myers, K.A., Hasaka, T.P., Francis, F., Black, M.M., and Baas, P.W. (2006). Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7, 524-537. https://doi.org/10.1111/j.1600-0854.2006.00403.x
  2. Baas, P.W., Black, M.M., and Banker, G.A. (1989). Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J. Cell Biol. 109, 3085-3094. https://doi.org/10.1083/jcb.109.6.3085
  3. Berger, M., Chen, H., Reutter, W., and Hinderlich, S. (2002). Structure and function of N-acetylglucosamine kinase. Identification of two active site cysteines. Eur. J. Biochem. 269, 4212-4218. https://doi.org/10.1046/j.1432-1033.2002.03117.x
  4. Bou-Abdallah, F., Chasteen, N.D., and Lesser, M.P. (2006). Quenching of superoxide radicals by green fluorescent protein. Biochim. Biophys. Acta 1760, 1690-1695. https://doi.org/10.1016/j.bbagen.2006.08.014
  5. Brewer, G.J., Torricelli, J.R., Evege, E.K., and Price, P.J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576. https://doi.org/10.1002/jnr.490350513
  6. Dotti, C.G., Sullivan, C.A., and Banker, G.A. (1988). The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454-1468.
  7. Esko, J.D., and Lindahl, U. (2001). Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169-173. https://doi.org/10.1172/JCI200113530
  8. Estrada-Bernal, A., Sanford, S.D., Sosa, L.J., Simon, G.C., Hansen, K.C., and Pfenninger, K.H. (2012). Functional complexity of the axonal growth cone: A proteomic analysis. PLoS ONE 7, e31858. https://doi.org/10.1371/journal.pone.0031858
  9. Gardiol, A., Racca, C., and Triller, A. (1999). Dendritic and postsynaptic protein synthetic machinery. J. Neurosci. 19, 168-179.
  10. Goslin, K., and Banker, G. (1990). Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions. J. Cell Biol. 110, 1319-1331. https://doi.org/10.1083/jcb.110.4.1319
  11. Goslin, K., Assmussen, H., and Banker, G. (1998). Rat hippocampal neurons in low density culture. In Culturing Nerve Cells, 2nd Ed, Banker, G. and Goslin, K. eds. (Cambridge, MA: MIT Press). pp. 339-370.
  12. Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25-40. https://doi.org/10.1016/S0896-6273(03)00594-4
  13. Hakomori, S. (2000). Traveling for the glycosphingolipid path. Glycoconj. J. 17, 627-647. https://doi.org/10.1023/A:1011086929064
  14. Hinderlich, S., Nöhring, S., Weise, C., Franke, P., Stäsche, R., and Reutter, W. (1998). Purification and characterization of Nacetylglucosamine kinase from rat liver: comparison with UDP-Nacetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Eur. J. Biochem. 252, 133-139. https://doi.org/10.1046/j.1432-1327.1998.2520133.x
  15. Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K., and Reutter, W. (2000). Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur. J. Biochem. 267, 3301-3308. https://doi.org/10.1046/j.1432-1327.2000.01360.x
  16. Horton, A.C., and Ehlers, M.D. (2003). Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188-6199.
  17. Horton, A.C., Racz, B., Monson, E.E., Lin, A.L., Weinberg, R.J., and Ehlers, M.D. (2005). Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757-771. https://doi.org/10.1016/j.neuron.2005.11.005
  18. Hwa, K.Y. (2001). Glycosyl phosphatidylinositol-linked glycoconjugates: structure, biosynthesis and function. Advan. Exp. Mes. Biol. 491, 207-214. https://doi.org/10.1007/978-1-4615-1267-7_15
  19. Islam, M.A., Sharif, S.R., Lee, H.S., Seog, D.H., and Moon, I.S. (2015). N-acetyl-D-glucosamine kinase interacts with dynein light chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points. Exp. Mol. Med. 47, e177. https://doi.org/10.1038/emm.2015.48
  20. Jareb, M., and Banker, G. (1997). Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture. J. Neurosci. 17, 8955-8963.
  21. Kardon, J.R., and Vale, R.D. (2009). Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10, 854-865. https://doi.org/10.1038/nrm2804
  22. Lee, H.S., Cho, S.J., and Moon, I.S. (2014a). The non-canonical effect of N-acetyl-D-glucosamine kinase on the formation of neuronal dendrites. Mol. Cells 37, 248-256. https://doi.org/10.14348/molcells.2014.2354
  23. Lee, H.S., Dutta, S., and Moon, I.S. (2014b). Upregulation of dendritic arborization by N-acetyl-D-glucosamine kinase is not dependent on its kinase activity. Mol. Cells 37, 322-329 https://doi.org/10.14348/molcells.2014.2377
  24. Merianda, T.T., Lin, A.C., Lam, J.S., Vuppalanchi, D., Willis, D.E., Karin, N., Holt, C.E., and Twiss, J.L. (2009). A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol. Cell. Neurosci. 40, 128-142. https://doi.org/10.1016/j.mcn.2008.09.008
  25. Moon, I.S., Cho, S.J., Jin, I., and Walikonis, R. (2007). A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82.
  26. Ori-McKenney, K.M., Jan, L.Y., and Jan, Y.N. (2012). Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal MT nucleation in neurons. Neuron 76, 921-930. https://doi.org/10.1016/j.neuron.2012.10.008
  27. Palmer, C.V., Modi, C.K., and Mydlarz, L.D. (2009). Coral Fluorescent Proteins as Antioxidants. PLoS ONE 4(10), e7298. https://doi.org/10.1371/journal.pone.0007298
  28. Papoulas, O., Hays, T.S., and Sisson, J.C. (2005). The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat. Cell. Biol. 7, 612-618. https://doi.org/10.1038/ncb1264
  29. Pierce, J.P., Mayer, T., and McCarthy, J.B. (2001). Evidence for a satellite secretory pathway in neuronal dendritic spines. Curr. Biol. 11, 351-355. https://doi.org/10.1016/S0960-9822(01)00077-X
  30. Rakic, P., Knyihar-Csillik, E., and Csillik, B. (1996). Polarity of microtubule assemblies during neuronal cell migration. Proc. Natl. Acad. Sci. USA 93, 9218-9222. https://doi.org/10.1073/pnas.93.17.9218
  31. Reutter, W., Stasche, R., Stehling, P., and Baum, O. (1997). In Glycosciences, Status and Perspectives, H.J. Gabius, and S. Gabius, eds. (Weinheim, Germany: Chapman and Hall Ltd.), pp. 245-259.
  32. Reuter, J.E., Nardine, T.M., Penton, A., Billuart, P., Scott, E.K., Usui, T., Uemura, T., and Luo, L. (2003). A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 130, 1203-1213. https://doi.org/10.1242/dev.00319
  33. Roghi, C., Allan, V.J., Wall, J.S., and Brown, J.C. (1999). Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J. Cell. Sci. 112, 4673-4685.
  34. Sainath, R., and Gallo, G. (2014). The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Devel. Neurobio. doi: 10.1002/dneu.22246.
  35. Sakakibara, A., Sato, T., Ando, R., Noguchi, N., Masaoka, M., and Miyata, T. (2014). Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. Cereb. Cortex. 24, 1301-1310. https://doi.org/10.1093/cercor/bhs411
  36. Schachter, H. (2000). The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj. J. 17, 465-483. https://doi.org/10.1023/A:1011010206774
  37. Sharif, S.R., Lee, H.S., Islam, M.A., Seog, D.H., and Moon, I.S. (2015). N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol. Cells 38, 402-408. https://doi.org/10.14348/molcells.2015.2242
  38. Stokin, G.B., Lillo, C., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., Raman, R., Davies, P., Masliah, E., Williams, D.S., and Goldstein, L.S. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282-1288. https://doi.org/10.1126/science.1105681
  39. Tai, A.W., Chuang, J.Z., and Sung, C.H. (1998). Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J. Biol. Chem. 273, 19639-19649. https://doi.org/10.1074/jbc.273.31.19639
  40. Trushina, E., Dyer, R.B., Badger, J.D. 2nd, Ure, D., Eide, L., Tran, D.D., Vrieze, B.T., Legendre-Guillemin, V., McPherson, P.S., Mandavilli, B.S. et al. (2004). Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol. 24, 8195-8209. https://doi.org/10.1128/MCB.24.18.8195-8209.2004
  41. Van den Steen, P., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33, 151-208. https://doi.org/10.1080/10409239891204198
  42. Wanschers, B., Van de Vorstenbosch, R., Wijers, M., Wieringa, B., King, S.M., and Fransen, J. (2008). Rab6 family proteins interact with the dynein light chain protein DYNLRB1. Cell. Motil. Cytoskeleton 65, 183-196. https://doi.org/10.1002/cm.20254
  43. Watanabe, R., Murakami, Y., Marmor, M.D., Inuoe, N., Maeda, Y., Hino, J., Kangawa, K., Julius, M., and Kinoshita, T. (2000). Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO. J. 19, 4402-4411. https://doi.org/10.1093/emboj/19.16.4402
  44. Weihofen, W.A., Berger, M., Chen, H., Saenger, W., and Hinderlich, S. (2006). Structures of human N-Acetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation. J. Mol. Biol. 364, 388-399. https://doi.org/10.1016/j.jmb.2006.08.085
  45. Williamson, T.L., and Cleveland, D.W. (1999). Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50-56. https://doi.org/10.1038/4553
  46. Wolosker, H., Kline, D., Bian, Y., Blackshaw, S., and Cameron, A.M. (1998). Molecularly cloned mammalian glucosamine-6- phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. FASEB J. 12, 91-99. https://doi.org/10.1096/fasebj.12.1.91
  47. Yadav, S., Puthenveedu, M.A., and Linstedt, A.D. (2012). Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev. Cell. 23, 153-165. https://doi.org/10.1016/j.devcel.2012.05.023

Cited by

  1. N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division vol.39, pp.9, 2016, https://doi.org/10.14348/molcells.2016.0119
  2. Serine/Threonine Protein Kinase STK16 vol.20, pp.7, 2015, https://doi.org/10.3390/ijms20071760
  3. N- acetyl- D -glucosamine kinase binds dynein light chain roadblock 1 and promotes protein aggregate clearance vol.11, pp.8, 2020, https://doi.org/10.1038/s41419-020-02862-7
  4. N -Acetyl- D -Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010129
  5. Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function vol.22, pp.15, 2015, https://doi.org/10.3390/ijms22158048