• 제목/요약/키워드: bending of a beam

검색결과 1,177건 처리시간 0.033초

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

굽힘하중을 받는 알루미늄 사각관 보의 국부적 좌굴붕괴 거동에 관한 연구 (A Study on the Local Buckling Collapse Behavior of an Aluminum Square Tube Beam under a Bending Load)

  • 이성혁;최낙삼
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2011-2018
    • /
    • 2003
  • To analyze the bending collapse behavior of an aluminum square tube beam under a bending load, a finite element simulation for the four-point bending test has been performed. Using an aluminum tube beam specimen partly inserted with two steel bars, the local buckling deformation near the center of the tube beam was induced. The maximum bending load and the bending collapse behavior obtained from the numerical simulation were in good agreement with experimental results. Using a combination of the four-point bending test and its finite element simulation, analysis of the local buckling and the accompanied bending collapse behavior of aluminum tube beam could be quantitative accomplished.

Dynamic Analysis of Bending-Torsion Coupled Beam Structures Using Exact Dynamic Elements

  • Hong, Seong-Wook;Kang, Byung-Sik;Park, Joong-Youn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.15-22
    • /
    • 2003
  • Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be useful for dynamic analysis of bending-torsion coupled beam structures with joints.

DESIGN OF A BENDING MAGNET FOR THE KSTAR NBI SYSTEM

  • In, Sang-Ryul;Yoon, Byeong-Joo;Kim, Beom-Yeol
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.793-802
    • /
    • 2006
  • The design concept of a bending magnet to be installed in the KSTAR NBI system is presented. It is the function of a bending magnet that removes unconverted ions from the main beam stream and produces an 8 MW, 120 keV deuterium neutral beam. In order to determine the proper size and shape of the bending magnet, a parametric study on the B-field pattern was carried out by changing the dimensions of the pole face model. In addition, the detailed trajectories of the dominant ion species produced in the beam line were calculated. The electrical and cooling parameters of the coil assembly were also estimated.

굽힘 강도 향상을 위한 프레스 도어 임팩트 빔의 단면 설계 (The Section Design of Press Door Impact Beam for Improving Bending Strength)

  • 조경래;강성종
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.74-81
    • /
    • 2017
  • The door impact beam of the side-impacted vehicle plays a key role in securing occupant safety by preventing intrusion from the impacting vehicle. Despite the low production cost, the press door impact beam has been adopted sparingly because of the strength inferiority. In this study, the design technologies of the press beam aimed at improving bending strength were investigated. First, the effect of the section shape and size was examined. Next, thickness and material strength were increased. Also, the TRB beam application was simulated by varying combined thickness. Some TRB beams with reduced weight exhibited bending strength over the strength of the pipe beam. Then, the beam with a closed center section also showed remarkably enhanced maximum bending strength.

Bending analysis of a single leaf flexure using higher-order beam theory

  • Nguyen, Nghia Huu;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.781-790
    • /
    • 2015
  • We apply higher-order beam theory to analyze the deflections and stresses of a cantilevered single leaf flexure in bending. Our equations include shear deformation and the warping effect in bending. The results are compared with Euler-Bernoulli and Timoshenko beam theory, and are verified by finite element analysis (FEA). The results show that the higher-order beam theory is in a good agreement with the FEA results, with errors of less than 10%. These results indicate that the analysis of the deflections and stresses of a single leaf flexure should consider the shear and warping effects in bending to ensure high precision mechanism design.

A new first shear deformation beam theory based on neutral surface position for functionally graded beams

  • Bouremana, Mohammed;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim;Bedia, El Abbas Adda
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.467-479
    • /
    • 2013
  • In this paper, a new first-order shear deformation beam theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded beams. The proposed theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The neutral surface position for a functionally graded beam which its material properties vary in the thickness direction is determined. Based on the present new first-order shear deformation beam theory and the neutral surface concept together with Hamilton's principle, the motion equations are derived. To examine accuracy of the present formulation, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending and free vibration responses of functionally graded beam are discussed.

Bending performance and calculation of reinforced beam with hybrid fiber and CaCO3 whisker

  • Li Li;Yapeng Qin;Mingli Cao;Junfeng Guan;Chaopeng Xie
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.197-206
    • /
    • 2023
  • In this paper, the bending performance of a MSFRHPC (containing steel fiber, polyvinyl alcohol (PVA) fiber, and CW)-reinforced beam was studied for the first time. Introducing a multiscale fiber system increased the first crack load (up to 150%), yield load (up to 50%), and peak load (up to 15%) of reinforced beams. The multiscale fiber system delays cracking of the reinforced beam, reduces crack width of the reinforced beam in normal use, and improves the durability of the beam. Considering yield load and peak load, the reinforcing effect of multiscale fiber on the high-reinforcement ratio beam (1.00%) is better than that on the low-reinforcement ratio beam (0.57%). Introducing fibers slowed the development of cracks in the reinforced beam under bending. With the added hybrid fiber, the deformation concentration of reinforced beams after yield was more significant with concentration in 1 or 2 cracks. A model for predicting the flexural capacity of MSFRHPC-reinforced beams was proposed, considering the action of multiscale hybrid fibers. This research is helpful for structure application of MSFRHPC-containing CW.

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.

보강 알루미늄 사각관 보의 굽힘 성능평가 (Bending Performance Evaluation of Reinforced Aluminum Square Tube Beams)

  • 이성혁;최낙삼
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.171-180
    • /
    • 2005
  • Bending performances of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been evaluated using experimental tests combined with theoretical and finite element analyses. A finite element simulation for the three-point bending test was performed. Basic properties of aluminum materials used for initial input data of the finite element simulation were obtained from the true stress-true strain curves of specimens which had been extracted from the Al tube beams. True stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing, and true strains were obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens adhered by aluminum plates were employed fur the bending test. The bending deformation behaviors up to the maximum load described by the numerical simulation were in good agreement with experimental ones. After passing the maximum load, reinforcing plate was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed an excellent bending capability.