• 제목/요약/키워드: bending modulus of elasticity

검색결과 134건 처리시간 0.023초

투수용 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of Permeable Polymer Concrete)

  • 성찬용
    • 한국농공학회지
    • /
    • 제38권5호
    • /
    • pp.95-105
    • /
    • 1996
  • This study was performed to evaluate the mechanical properties of permeable polymer concrete using fillers and unsaturated polyester resin. The following conclusions were drawn; 1. The unit weight was in the range of 1, 663~ l, 892kg/$cm^3$, the weights of those concrete were decreased 18~28% than that of the normal cement concrete. 2. The highest strength was achieved by fly ash filled permeable polymer concrete, it was increased 22% by compressive strength, 190% by tensile strength and 192% by bending strength than that of the normal cement concrete, respectively. 3. The external strength of permeable pipe was in the range of 3, 083~3, 793kg/m, the external strengths of those concrete were increased 2~26% than that of the normal cement concrete. Accordingly, these permeable polymer concrete pipe can be used to the members and structures which need external strength. 4. The static modulus of elasticity was in the range of $5.7{\times} 10^4 ~ 15.4{\times} 10{^4}kg/cm^2 $, which was approximately 35~64% of that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $83{\times} 10^3 ~ 211{\times} 10{^3}kg/cm^2 $, which was approximately Ins compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 22~45% than that of the static modulus. 6. The ultrasonic pulse velocity was in the range of 2, 584 ~ 3, 587m/sec, . which was showed about the same compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was in the range of$0.58~8.88 {\ell}/cm^2/hr$, , and it was larglely dependent upon the mixing ratio. These concrete can be used to the structures which need water permeability.

  • PDF

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

촉진 열화 목재의 초음파 전달 시간 측정을 통한 탄성 계수의 평가 (Evaluation of Modulus of Elasticity of Wood Exposed to Accelerated Weathering Test by Measuring Ultrasonic Transmission Time)

  • 박천영;김광철
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권3호
    • /
    • pp.275-281
    • /
    • 2014
  • 본 연구에서는 전통 목조 건축물의 주재료인 목재를 인공 촉진 열화 시킨 후 초음파 전달 속도 측정을 통하여 탄성계수를 측정하였다. 촉진 열화 시간은 0시간에서 500, 1000, 1500, 2000시간이며, 자외선 조사와 주기적인 인공 강우를 통해 열화를 진행시켰다. 초음파 전달 속도 측정을 통하여 동적 탄성 계수를 평가하고 이를 3점 휨 시험을 통하여 측정한 정적 탄성계수와 비교분석하였다. 초음파 전달 속도, 정적 탄성계수, 동적 탄성계수는 열화 시간이 증가함에 따라 동일한 경향을 나타내었는데, 열화 1000시간까지는 탄성계수가 감소하다가 1500시간 이후 다시 회복되는 경향을 보였다. 이러한 결과는 비파괴 검사법을 통하여 전통 목조 건축물의 구조 부재의 열화 평가는 물론 구조 안전성 평가의 기초 자료로 활용될 수 있음을 알려준다.

국내 기계등급구조재의 허용응력 분석 (Analysis of Allowable Stresses of Machine Graded Lumber in Korea)

  • 홍정표;오정권;박주생;한연중;방성준;김철기;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권4호
    • /
    • pp.456-462
    • /
    • 2015
  • KS F 3020-침엽수구조용재 기준에 따라 국산 소나무(Pinus densiflora) $38{\times}140{\times}3600mm$ 구조용 제재목 365개에 대하여 기계등급구분을 실시하고, 휨허용응력을 산출하여 현재 적용되는 KS기준허용응력과 비교 분석하였다. 휨허용응력 계산을 위하여 5% 휨강도 하한값을 75% 신뢰수준의 비모수적 방법, 2-parameter 그리고 3-parameter Weibull 분포를 가정한 모수적 방법, 휨강도-휨탄성계수 직선회귀 방법, 총 4가지 분석방법을 사용하여 결정하였다. 기계등급 E8, E9, E10 만이 비모수적 방법의 통계 처리가 가능한 자료 수를 얻었으며, 휨강도-휨탄성계수 직선회귀 방법은 이론적으로 모든 등급에 대한 5% 하한값 결정이 가능함을 보여주었다. 결정된 등급별 휨허용응력은 기준허용응력에 비하여 모두 낮은 값을 나타내었으며 이것은 과소설계의 위험성이 있는 것으로 현행 기계등급구분체계의 문제점으로 파악되었다. 이러한 문제는 구조설계 신뢰성과 관련하여 반드시 개선되어야 할 것으로, 휨강도-휨탄성계수 조합 등급 도입이 필요할 것으로 생각되었다.

핑거공차가 휨강도성능에 미치는 영향 (Effect of Finger Dimensions of Tip and Root Widths on Bending Strength Properties)

  • 변희섭;류현수;안상열;이균필;박한민;김종만
    • 한국가구학회지
    • /
    • 제12권2호
    • /
    • pp.1-10
    • /
    • 2001
  • As finger joint method has a high rate of yield and high strength and ease in working, it has been widely used as an end joint method for solid wood and wood based-material. Therefore, we end-joined the material of Pinus densiflora, Quercus variabilis and populus euramericana with polyvinyl acetate adhesive and resorcinol phenol resin adhesive. The effect of difference (0, 0.15, 0.3, 0.45mm) between the dimensions of tip width and root width of the finger (DTRW) on bending strength properties was as follows: 1. In the case of polyvinyl acetate adhesive, DTRW had no effect on bending modulus of elasticity(MOE) and modulus of rupture(MOR) of the three kinds of species, because their bonding layers were destroyed by slippage, not their woody parts. 2. In the case of resorcinol phenol resin adhesive, the material of Quercus variabilis showed an optimal result at 0.15 or 0.3 of DTRW, while the poplar did at 0 of DTRW 3. The differences in efficiency ratio of bending MOR of populus euramericana, Pinus densiflora and Quercus variabilis species according to the kind of adhesive were 13-29%, 23-30% and 45-53%, respectively.

  • PDF

수증기처리 열압밀화 목재의 강도적 성질 (Strength Properties of Steaming Wood after Heat-Compression)

  • 김정환;이원희;한규성;변희섭
    • 한국가구학회지
    • /
    • 제11권2호
    • /
    • pp.1-6
    • /
    • 2000
  • This study was carried out to investigate the effect of steaming on mechanical properties of heat-compressed wood specimens. The specimens for this mechanical strength tests were prepared to super-heated steam treatment after compression to the radial direction of sonamu (Pinus densiflora). The specimen's size is $50(L)mm{\times}20(R)mm{\times}17(T)mm$. Steaming temperature and treatment time is $120^{\circ}C$ and 20, 40, 60, 80, 100 minutes, respectively. Modulus of elasticity(MOE) in compressive test is directly proportional to steaming time. On the other hand, modulus of elasticity in bending test between steaming and not steaming after heat-compressed wood is similar irrespective of steaming time. The reason for this phenomenon is not clear yet.

  • PDF

CaCO3와 석분을 혼입한 투수용 폴리머 콘크리트의 공학적 성질 (Engineering Properties of Permeable Polymer Concrete with CaCO3 and Stone Dust)

  • 성찬용;송용진;정현정
    • 농업과학연구
    • /
    • 제23권1호
    • /
    • pp.61-69
    • /
    • 1996
  • 이 연구는 폴리머와 충전재로 $CaCO_3$와 석분을 혼입한 투수용 폴리머 콘크리트의 공학적 성질을 구명한 것으로서, 이 연구를 통해 얻어진 결과를 요약하면 다음과 같다. 1. 강도는 충전재로 석분을 100% 혼입한 투수용 폴리머 콘크리트에서 가장 크게 나타났으며, 보통 시멘트 콘크리트보다 압축강도에서는 17%, 인장강도에서는 148%, 휨강도에서는 188% 증가되었고, 압축강도에 대한 인장과 휨강도비가 보통 시멘트 콘크리트보다 2.1~2.5배이상 크게 나타나 취성이 크다는 것을 알 수 있었다. 2. 정탄성계수는 $1.17{\times}10^5{\sim}1.32{\times}10^5kg/cm^2$로서 보통 시멘트 콘크리트의 53~56%정도로 변형성이 크게 나타났고, 충전재로는 석분을 100% 혼입한 투수용 폴리머 콘크리트에서 비교적 높은 값을 보였으며, 포아손수는 보통 시멘트 콘크리트보다 작게 나타났다. 3. 동탄성계수는 $1.3{\times}10^5{\sim}1.5{\times}10^5kg/cm^2$로서 보통 시멘트 콘크리트보다 작게 나타났고, 충전재로는 석분을 100% 혼입한 투수용 폴리머 콘크리트에서 비교적 높은 값을 보였으며, 동탄성계수는 정탄성계수보다 10~13%정도 크게 나타났다. 4. 투수량은 $3.076{\sim}4.390{\ell}/cm^2/h$로서 배합설계에 따라 크게 좌우되었으며, 이러한 콘크리트는 투수를 요하는 구조물에 유용하게 이용할 수 있을 것이다. 5. 투수량은 압축강도, 인장강도, 휨강도 및 탄성계수가 증가할수록 감소하였다.

  • PDF

Mechanical Properties of the Oriented Strand Board (OSB) Distributed in the Korean Market

  • Eun-Chang KANG;Min LEE;Sang-Min LEE;Se-Hwi PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권4호
    • /
    • pp.253-269
    • /
    • 2023
  • Oriented strand board (OSB) distributed in Korea was collected, and its mechanical properties were investigated according to the International Organization for Standardization (ISO), Japanese Industrial Standards, and Korean Design Standard. Ten types of OSBs were collected, including six types for walls and others for floors. The thickness swelling, moisture content, and density of each product satisfied the ISO standards. All products showed lower formaldehyde emission values than those of the SE0 grade. The internal bonding strengths of all products, except products B, H, and I, met the ISO standards. However, products A, B, C, F, and H did not satisfy the thickness swelling standard of the load-bearing OSB for use in dry conditions. Products D and G showed heavy duty load-bearing OSB for use in humid conditions in terms of internal bonding and bending strength after boiling. In the nail head pull-through force and lateral nail resistance tests, all products met the standards. In terms of the structural bending performance (four points), the six types of OSBs for walls satisfied the standard for bending strength and modulus of elasticity. All the products for flooring met the standard for bending strength but, except for product G, the products did not meet the standard for modulus of elasticity. Although the results of this study cannot represent the performance of all imported OSBs, considering the above results, the water resistance performance of seven types of OSB products did not meet the standard, and 10 types of products did not match the labeling grades.

Effect of Heat Treatment on the Bending Strength and Hardness of Wood

  • Won, Kyung-Rok;Kim, Tae-Hong;Hwang, Kyo-Kil;Chong, Song-Ho;Hong, Nam-Euy;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권5호
    • /
    • pp.303-310
    • /
    • 2012
  • Heat treatment improves dimensional stability and sound absorption properties of wood. However, mechanical properties of wood can be deteriorated during the heat treatment. The effect of heat treatment on the bending strength and hardness of wood for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. The results showed that the weight and density of wood decreased after heat treatment. It was found that the density by heat treatment was lower at $200^{\circ}C$ than that at $175^{\circ}C$. And, MOE increased with the reduced density. On the contrary, MOR and hardness decreased. In all conditions, It was found that there was a high correlation of 1% level between bending modulus of elasticity and modulus of rupture.

COMPARISON OF MECHANICAL PROPERTIES OF VARIOUS POST AND CORE MATERIALS

  • Ahn Seung-Geun;Sorensen John A.
    • 대한치과보철학회지
    • /
    • 제41권3호
    • /
    • pp.288-299
    • /
    • 2003
  • Statement of problem: Many kinds of post and core systems are in the market, but there are no clear selection criteria for them. Purpose: The purpose of this study was to compare the flexural strength and modulus of elasticity of core materials, and measure the bending strength of post systems made of a variety of materials. Material and Methods: The flexural strength and elastic modulus of thirteen kinds core buildup materials were measured on beams of specimens of $2.0{\times}2.0{\times}24{\pm}0.1mm$. Ten specimens per group were fabricated and loaded on an lnstron testing machine at a crosshead speed of 0.25mm/min. A test span of 20 mm was used. The failure loads were recorded and flexural strength calculated with the measured dimensions. The elastic modulus was calculated from the slopes of the linear portions of the stress-stram graphs. Also nine kinds commercially available prefabricated posts made of various materials with similar nominal diameters, approximately 1.25mm, were loaded in a three-point bend test until plastic deformation or failure occurred. Ten posts per group were tested and the obtained data were anaylzed with analysis of variance and compared with the Tukey multiple comparison tests. Results: Clearfil Photo Core and Luxacore had flexural strengths approaching amalgam, but its modulus of elasticity was only about 15% of that of amalgam. The strengths of the glass ionomer and resin modified glass ionomer were very low. The heat pressed glass ceramic core had a high elastic modulus but a relatively low flexural strength approximating that of the lower strength composite resin core materials. The stainless steel, zirconia and carbon fiber post exhibited high bending strengths. The glass fiber posts displayed strengths that were approximately half of the higher strength posts. Conclusion: When moderate amounts of coronal tooth structure are to be replaced by a post and core on an anterior tooth, a prefabricated post and high strength, high elastic modulus core may be suitable. CLINICAL IMPLICATIONS In this study several newly introduced post and core systems demonstrated satisfactory physical properties. However when the higher stress situation exists with only a minimal ferrule extension remaining a cast post and core or zirconia post and pressed core are desirable.