• Title/Summary/Keyword: bending failure

Search Result 799, Processing Time 0.025 seconds

Effect of corrosion on the ultimate strength of double hull oil tankers - Part II: hull girders

  • Kim, Do Kyun;Park, Dae Kyeom;Park, Dong Hee;Kim, Han Byul;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.531-549
    • /
    • 2012
  • Numerous oil tanker losses have been reported and one of the possible causes of such casualties is caused by the structural failure of aging ship hulls in rough weather. In aging ships, corrosion and fatigue cracks are the two most important factors affecting structural safety and integrity. This research is about effect on hull girder ultimate strength behavior of double hull oil tanker according to corrosion after Part I: stiffened panel. Based on corrosion data of Part I (time-dependent corrosion wastage model and CSR corrosion model), when progressing corrosion of fourtypes of double hull oil tankers (VLCC, Suezmax, Aframax, and Panamax), the ultimate strength behavior of hull girder is compared and analyzed. In case of the ultimate strength behavior of hull girder, when occurring corrosion, the result under vertical and horizontal bending moment is analyzed. The effect of time-dependent corrosion wastage on the ultimate hull girder strength as well as the area, section modulus, and moment of inertia are also studied. The result of this research will be useful data to evaluate ultimate hull girder strength of corroded double hull oil tanker.

A Study on the Mechanical Properties of Concrete Filled Steel Tube Column under Centric Axial Load (중심축력을 받는 콘크리트 충전강관 기둥의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.133-144
    • /
    • 1995
  • This study investigated to the properties of structural behaviors through a series of experiment with the key parameter, such as diameter-to-thickness(D/t) ratio, selenderness ratio of steel t~ube and strength of concrete under loading condition simple confined concrete by steel tube as a fundmental study on adaptability with structural members in high-rise building. The obtained results are sumnarised as follow. (1) The fracture mode of confined concrete was presented digonal tension fracture in the direction of $45^{\circ}$ with compression failure at the end of specimen in stub column, but the fracture mode of long column was assumed an aspect of bending fracture transversely. (2) The deformation capacity and ductility effect was increased by confine steel tube for concrete. (3) 'The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint of concrete considered D / t ratio, selenderness ratio of steel tube anti strength of' concrete were proposed.

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.

Life Estimation of Elevator Wire Ropes Using Accelerated Degradation Test Data (가속열화시험 데이터를 활용한 엘리베이터 와이어로프 수명 예측)

  • Kim, Seung Ho;Kim, Sang Boo;Kim, Sung Ho;Ham, Sung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.997-1004
    • /
    • 2017
  • The life of elevator wire ropes is one of the most important characteristics of an elevator, which is closely related to the safety of users and its maintenance policy. It is not cost effective to measure the lifetime of elevator wire ropes during their use. In this study, the life estimation of elevator wire ropes (8x19W-IWRC) is considered using accelerated degradation test data. A bending fatigue tester is used to perform the accelerated degradation tests, incorporating the acceleration factor of tensile force. Assuming that the life of wire ropes is log-normally distributed, two life estimation methods are suggested and their results are compared. The first method estimates the life of wire ropes utilizing the accelerated life model with pseudo lives obtained from a linear regression model. The second method estimates the life using a logistic model based on failure probability.

Reliability-Based Performance Assessment and Prediction of Tendon Corrosion in K-UHPC Bridges (K-UHPC 교량의 긴장재 부식에 관한 신뢰성 기반 성능 평가 및 예측)

  • Kwon, Kihyon;Park, Sung Yong;Cho, Keunhee;Kim, Sung Tae;Park, Jong Beom;Kim, Byung Suk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.75-81
    • /
    • 2016
  • Tendon corrosion reliability in KICT-ultra high performance concrete (K-UHPC) bridges is assessed and predicted considering uncertainties in flexural bending capacity and corrosion occurrence. In post-tensioning bridge systems, corrosion is a one of most critical failure mechanisms due to strength reduction by it. During the entire service life, those bridges may experience lifetime corrosion deterioration initiated and propagated in tendons which are embedded not only in normal concrete but also in K-UHPC. For this reason, the time-variant corrosion performance has to be assessed. In the absence of in-depth researches associated with K-UHPC tendon corrosion, a reliability-based prediction model is developed to evaluate lifetime corrosion performance of tendon in K-UHPC bridges. In 2015, KICT built a K-UHPC pilot bridge at 168/5~168/6 milestone on Yangon-Mandalay Expressway in Myanmar, by using locally produced tendons which post-tensioned in longitudinal and lateral ways of K-UHPC girders. For an illustrative purpose, this K-UHPC bridge is used to identify the time-variant corrosion performance.

A Study on Flexural Behavior of Externally Reinforced R.C. Beam with Carbon Fiber Sheet : In Case of Constructional Deficiencies (탄소섬유시트로 보강된 철근콘크리트 보의 시공불량시 휨 거동에 관한 연구)

  • Park, Hyun-Jung;Lee, Hong-Ju;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.95-102
    • /
    • 2002
  • The flexural behavior of the reinforced concrete (RC) structure upgraded by external reinforcements was examined in this study. It is well known that the incorporation of carbon fiber sheet (CFS) with concrete is one of the most effective ways to strengthen the RC structure. Complete bonding is required between CFS and concrete in order to make the RC structure provide its full function until the time the Re structures serve. Many studies have reported that construction deficiencies have caused the debonding of the CFS from concrete before the RC structure with CFS reaches its ultimate capacity. This research took a systematic look at the failure mechanism, macroscopic load-deformation characteristics, the maximum load applied, and maximum bending moment when construction deficiencies exist. The results of the experiment conducted were compared with theoretically derived values. In the future, the results of this investigation will help minimize the factors of construction deficiencies, which may occur when CFS is used to reinforce a RC structure. The experiment was manipulated with steel reinforcement ratio and piles of CFS on a total of 14 beams ($20cm{\times}30cm{\times}240cm$). The results showed that internal moment capacity increased even when construction deficiencies existed. However, RC structures with CFS in the field still contain a considerable level of potential risks.

Static and Dynamic Stability Evaluation of Model Guardrail Posts Based on Geotechnical Properties (지반특성에 기초한 모형 연성방호책 지주의 정적 및 동적안정성 평가)

  • Lim, Yu-Jin
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-245
    • /
    • 2009
  • Availability of pressuremeter test for evaluation of geotechnical properties of foundation soil into which guardrail post is to be installed is investigated in this study. First, an analysis method of the post based on the pressuremeter test is proposed that can obtain bending moment and load-deformation profiles of the post. Then static horizontal load test onto a small scale guardrail post is performed in order to get bearing capacity and load-deformation pattern of the model post. The obtained results are compared with the load-deformation curves and bearing capacity of the post obtained from the pressuremeter method. In addition horizontal impact test to the post is performed using a model bogie car in order to check failure pattern around the model foundation and to investigate dynamic bearing capacity due to deceleration and inertia force of the soil. It is verified that the pressuremeter test is so useful and reasonal technique to analyze road foundation-post interaction.

  • PDF

Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber (H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동)

  • Kim, Soon Chul;Yang, Il Seung;Moon, Youn Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2006
  • In some cases, wooden structures are used for medium-rise buildings. It is therefore necessary to develop and test a new structural system for medium-rise buildings using wooden structures. This study deals with high-performance, laminated, timber-based composite members, which consist of structural laminated timber and H-beam. Simple beam tests were performed to determine the strength, stress distributions, and failure patterns of laminated timber. The main parameters are the insertinglength (1, 1.5, and 2 times the H-beam height) and the epoxy between the top/bottom flange of the H-beam and the top/bottom flange of the laminated timber. The results of the test show that the specimen with an inserting length that is 2 times the H-beam height was characterized by fairly god strength and stiffness.

Toughening Mechanism and Mechanical Property in Thermoplastic Polyolefin-Based Composite Systems (폴리올레핀 복합재료의 파괴인성 메커니즘 및 기계적 특성)

  • Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.123-129
    • /
    • 2007
  • Toughening mechanisms and mechanical properties of three different polyolefin-based composite systems we studied using the tensile, Izod impact and double-notch lout-point-bending (DN-4PB) test, which is well known be an effective tool for probing the failure mechanism (s) around the subcritically propagated crack tip. Microscopy observations such as optical microscopy and transmission electron microscopy were carried out lot the test samples. A detailed investigation clearly shows that a variety of toughening mechanisms, i.e., shear yielding, craze, particle-matrix debonding, rubber particle cavitation, crack deflection and bifurcation, are observed around crack tip damage zone. These toughening mechanisms are responsible for the observed, improved fracture toughness. Based on this study, DN-4PB technique is sufficient to obtain the information needed to describe the fracture behavior of polyolefin-based composites as well as their corresponding toughening mechanisms.

Load Bearing Capacity of Welded Joints between Dissimilar Pipelines with Unequal Wall Thickness (두께가 다른 이종배관 용접부 면삭 각도 변화에 따른 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.961-970
    • /
    • 2012
  • The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.