• 제목/요약/키워드: bending deformation

검색결과 1,185건 처리시간 0.031초

열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구 (A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions)

  • 김일호;이순복
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권2호
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구 (Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation)

  • 송정한;장야징;이종섭;박성준;최두순;이근안
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향 (Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending)

  • 김진원;김태순;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

피라미드코어재를 갖는 접합판재의 L-굽힘가공 특성 (Deformation Pattern of the Pyramid-Core Welded Sandwich Sheet Metal in L-Bending)

  • 김종호;정완진;조용준;김흥근;홍명재;유정수;성대용;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.316-319
    • /
    • 2008
  • The L-bending of inner-structure bonded sandwich sheet metal is examined by using a bending die attached to the material testing machine. The specimen is composed of top and bottom layers and a middle layer of pyramid-core structure and each layer is bonded by brazing. The variables chosen for experiments were clearance between punch and die, location of bend line on the specimen surface and clamping type of specimen during L-bending. Effects of these variables on deformation of specimen around die-corner radius were investigated. It was shown that the irregular shapes of recess are formed in the inner layer of bended parts and they greatly depend on working conditions.

  • PDF

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil;Majumder, Aditi;Kalita, Kanak
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.125-131
    • /
    • 2019
  • A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

수치해석모델을 이용한 강판재의 종굽힘 용접변형 생성기구의 해석 (Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model)

  • 김용래;엄괄신;송규영;김재웅
    • 대한기계학회논문집A
    • /
    • 제41권1호
    • /
    • pp.49-55
    • /
    • 2017
  • 용접변형이란 용접열원에 의해 구조물에 생성되는 불균일 온도분포에 의해서 발생하는 영구적인 변형이다. 용접변형은 용접구조물의 강도와 외관 및 치수 정밀도를 저하시킴으로써 생산성 저하의 주원인이 되기도 하며, 이러한 용접변형을 제어하기 위해 많은 실험과 연구가 수행되었다. 본 논문은 용접시 발생되는 변형 중에 하나인 종굽힘에 대하여 실험과 수치적 해석결과를 통해 비교 및 분석하였으며, 이를 통해 종굽힘 용접변형의 생성기구에 대하여 연구한 것이다. 용접실험은 4, 8.5 mm 두께의 평판에 대해 실시하였으며, 수치적 해석은 MSC.marc 상용프로그램을 사용하였다.

굽힘하중을 받는 보강 사각관 보의 좌굴변형거동 해석 (Bending Analysis of Reinforced Tube Beams)

  • 최낙삼;이성혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.60-65
    • /
    • 2007
  • Local buckling behaviors of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been analyzed using experimental tests combined with theoretical and finite element analyses. For this analysis true stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing. True strains were also obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens reinforced by aluminum plates were employed for the bending test. The bending deformation behaviors up to the maximum load analyzed by the numerical simulation agreed well with experimental ones. After passing the maximum load, reinforcing plate hindering the local buckling of the tube beam was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed the most excellent bending capacity, which could be explained on the basis of the neutral axis shift and the local buckling deformation range.

  • PDF

Bi-2223 초전도테이프 임계전류의 굽힘하에서 인장변형률 특성 (Effect of tensile strain on $I_{c}$ degradation characteristics in Bi-2223 superconducting tapes under bending)

  • 신형섭;오상수;하동우
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.134-138
    • /
    • 2003
  • The influences of mixed mode of bending-tension on the Ic degradation and their interaction on the strain effect were evaluated in this study. A test fixture which applies a mixed deformation mode of bending-tension to HTS tapes has been newly devised. When the strain induced in the tape due to the mixed deformation mode was expressed as a total tensile strain, the irreversible strain to the critical current degradation of Bi-2223 tapes increased when compared with the case of simple bending mode, and the value at both ends were larger than that at the central region of the bend part. The Ic degradation behavior at the region exceeding the irreversible strain showed quiet a rapid drop of the Ic when compared with the simple bending cases. As the applied bending strain increased namely as the diameter of mandrel adopted decreased, the apparent irreversible strain of Bi-2223 tapes increased However, the increment decreased as the mandrel diameter decreased. As a result, it could be found that the tension to be applied to the Bi-2223 tapes during cabling of HTS tapes should be smaller, as the mandrel diameter becomes smaller.

  • PDF

Timoshenko형 전단변형을 고려한 대칭적층 개단면 복합재 보의 휨해석 (Bending Analysis of Symmetrically Laminated Composite Open Section Beam Using the First-Order Shear Deformation Beam Theory)

  • 권효찬;박영석;신동구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.43-50
    • /
    • 2000
  • In the first-order shear deformation laminated beam theory (FSDT), the Kirchhoff hypothesis is relaxed such that the transverse normals do not remain perpendicular to the midsurface after deformation. Bending behavior of laminated composite thin-walled beams with singly- and doubly-symmetric open sections under uniformly distributed and concentrated loads is analyzed by the Timoshenko-type thin-walled beam theory. A closed-form expression for the shear correction factor of I-shaped composite laminated section is obtained. Numerical examples are presented to compare present analytical solutions by FSDT with the finite element solutions obtained by using three dimensional model. The effects of lamination of scheme and length-to-height ratio on the shear deformation of laminated composite beams with various boundary conditions are studied.

  • PDF