• 제목/요약/키워드: bending deformation

검색결과 1,190건 처리시간 0.032초

축 방향 하중을 받는 인장-굽힘-전단이 연성된 복합재 적층보의 파동특성 (Wave Characteristic in the Axially Loaded Axial-Bending-Shear Coupled Composite Laminated Beams)

  • 장인준;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2650-2652
    • /
    • 2011
  • The fiber reinforced composite materials have many advantages due to their high strength-to-density ratios. Thus they have been widely used in many industrial applications. As the wave propagation are closely related to dynamic analysis of structures, it is very important to predict them. This paper presents a wave propagation in the axially loaded axial-bending-shear coupled composite laminated beams which are represented by the Timoshenko beam models based on the first-order shear deformation theory.

  • PDF

고체 평판의 비선형 순수굽힘변형에 대한 수학적 정해 (A Closed Form Nonlinear Solution for Large Pure Bending Deformation of Solid Plate)

  • Youngjoo Kwon
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.220-225
    • /
    • 1998
  • 압축성 초탄성 평판의 순수굽힘에 대한 비선형 변형해석의 수학적 정해가 본 논문에 구해져 있다. 이차원 평면 변형도 상태가 해석을 위하여 가정되었으며, 비선형 순수굽힘 변형해석결과는 고전적인 선형 순수굽힘 변형해석결과와 비교되었다. 고전적인 선형굽힘 결과와는 다르게 비선형 순수굽힘 상태에서는 반경방향응력은 영이 아니며 또한 각방향응력도 선형 상태가 아닌 것으로 규명되었다.

  • PDF

분말단조에 의한 베벨기어의 성형 기술 연구 (Development of Bevel Gear by Powder Forging Process)

  • 이정만
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.258-267
    • /
    • 1997
  • The powder forging process is an attractive manufacturing route for bevel gears. It offers beneficial material utilization and the minimization of finishing operations over that of conventional hot forging. The paper describes the process conditions for the powder forging of bevel gear, for example, powder alloy design, preform design, deformation of sintered preform, forging processes. The characteristics of prototype gear are investigated with microstructure, the density distribution, surface roughness of tooth, bending strength test of tooth, etc. The results of the bending strength test may prove the mechanical properties of powder forged gear.

  • PDF

V-개선 맞대기 용접변형에 대한 간이 예측 모델 개발 (Development of Simple Prediction Model for V-groove butt welding deformation)

  • 김상일
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.106-113
    • /
    • 2004
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. Systematic and quantitative theoretical works to clarify the effects of various factors on the welding deformation have rarely been found. Therefore, in this paper, the effects of various factors, such as welding process and gravity on the butt welding deformation have been investigated through a number of numerical analyses. In addition, this paper proposes a simplified analysis method to predict the butt welding deformation in actual plate structure. For this purpose, a simple prediction model for butt welding deformations has been derived based on numerical and experimental results through the regression analysis. Based on these results, the simplified analysis method has been applied to some examples to show its validity.

A refined theory with stretching effect for the flexure analysis of laminated composite plates

  • Draiche, Kada;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.671-690
    • /
    • 2016
  • This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Ibrahim, Zainah
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.205-229
    • /
    • 2012
  • This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

굽힘상태의 외부보강한 Bi-2223 초전도테이프에서 임계전류 열화특성에 미치는 인장변형률의 영향 (Effect of Tensile Strain on $I_c$ Degradation Characteristics In Bent Externally Reinforced Bi-2223 Superconducting Tapes)

  • 신형섭;김기현;오상수;하동우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권1호
    • /
    • pp.6-11
    • /
    • 2004
  • The influences of mixed strain mode of bending-tension on the critical current. Ic in externally reinforced Bi-2223 tapes and their interaction were investigated in this study. A test fixture which providing a mixed deformation mode of bending-tension to HTS tapes has been newly devised. When the total strain induced in the tape in the mixed strain mode was expressed by the superposition of the bending and tensile strains the irreversible strain for the critical current degradation of Bi-2223 tapes increased, as compared with the simple bending mode case. The $I_c$ degradation at the region exceeding the irreversible strain showed a medium between the simple bending case and the simple tension case. As the initial bending strain imparted increased , namely as the diameter of mandrel adopted decreased. the apparent irreversible strain in Bi-2223 tapes increased . but the increment became smaller As a result. it can be found that the tension to be applied to bent Bi-2223 tapes during cabling should be smaller. as the mandrel diameter becomes smaller.

Impact Bending Test Simulations of FH32 High-strength Steel for Arctic Marine Structures

  • Choung, Joonmo;Han, Donghwa;Noh, Myung-Hyun;Lee, Jae-Yik;Shim, Sanghoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권1호
    • /
    • pp.28-39
    • /
    • 2016
  • This paper provides theoretical and experimental results to verify the crashworthiness of FH32 high-strength steel for arctic marine structures against ice impact. Assuming that side-shell structures of the Korean arctic research vessel, ARAON, with ice-notation PL10, collide with sheet ice, one-third-scale test specimens with a single transverse frame are manufactured. Impact-bending tests were conducted using a rigid steel striker that mimics sheet ice. Drop height was calculated by considering the speed at which sheet ice is rammed. Prior to impact-bending tests, tensile coupon tests were conducted at various temperatures. The impact-bending tests were carried out using test specimens fully fixed to the inside bottom frame of a cold chamber. The drop-weight velocity and test specimen deformation speed were measured using a high-speed camera and digital image correlation analysis (DICA). Numerical simulations were carried out under the same conditions as the impact-bending tests. The simulation results were in agreement with the test results, and strain rate was a key factor for the accuracy of numerical simulations.

벌루닝 손상에 강한 Bi-2223 테이프의 기본적인 전기-기계적 특성 (Fundamental Electro-Mechanical Characteristics of Ballooning-Resistant Bi-2223 HTS Tapes)

  • 존얀 디존;신형섭;하동우;조전욱;오상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.26-27
    • /
    • 2006
  • The fundamental mechanical characteristics under tensile and bending deformations of hermetically-sealed reinforced Bi-2223 tape and CTOP processed Bi-2223 tape were examined at 77K. Also, the Tensile strain dependence of the critical current, $I_c$, was obtained at 77K and self-field. The reinforced hermetic tape showed higher tensile strength and a better Tensile strain tolerance than the CTOP processed tape. For bending tests, a rho-shaped sample holder was used giving multiple bending strains. in increasing order. In the same case under bending deformation, the hermetic tape showed a higher bending strain tolerance than the CTOP processed tape. This higher strength of the hermetic tape can be attributed to the thick hardened copper reinforcement layer.

  • PDF

딤플형 내부 구조체를 가진 ISB 판넬의 굽힘 강성 특성 (Bending characteristics of ISB panel with dimple shapes as inner structures)

  • 안동규;이상훈;김진석;문경재;한길영;정창균;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.117-118
    • /
    • 2006
  • The objective of this paper is to investigate into bending and failure characteristics of ISB panel with dimple shapes as inner structures. Through three-points bending test, the force-displacement curve and the failure shape are obtained to examine the deformation pattern, characteristic data including maximum load and displacement at the maximum load and failure pattern for the ISB panel. In addition, the influence of design parameters for ISB panel on the bending stiffness and failure mode has been found. From the results of the experiments, it has been shown that bending and failure characteristics of the ISB panel can be controlled by the ratio of radius and the direction of the material.

  • PDF