References
- Choi, C.K. and Park, Y.M. (1999), "Quadratic NMS Mindlin-plate-bending element", Int. J. Numer. Meth. Eng., 46(8), 1273-1289. https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1273::AID-NME754>3.0.CO;2-N
- Choi, C.K., Lee, T.Y. and Chung, K.Y. (2002), "Direct modification for nonconforming elements with drilling DOF", Int. J. Numer. Meth. Eng., 55(12), 1463-1476. https://doi.org/10.1002/nme.550
- Chen, W.J. and Cheung, Y.K. (1987), "A new approach for the hybrid element method", Int. J. Numer. Meth. Eng., 24, 1697-1709. https://doi.org/10.1002/nme.1620240907
- Darylmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215. https://doi.org/10.12989/sem.2005.19.2.199
- Darylmaz, K. and Kumbasar, N. (2006), "An 8-node assumed stress hybrid element for analysis of shells", Comput. Struct., 84, 1990-2000. https://doi.org/10.1016/j.compstruc.2006.08.003
- Dhananjaya, H.R., Pandey, P.C. and Nagabhushanam, J. (2009), "New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method", Struct. Eng. Mech. 33(4), 485-502. https://doi.org/10.12989/sem.2009.33.4.485
- Dimitris, K, Hung, L.T., and Atluri, S.N. (1984), "Mixed finite element models for plate bending analysis, A new element and its applications", Comput. Struct., 19(4), 565-581. https://doi.org/10.1016/0045-7949(84)90104-4
- Hughes, T.J.R. and Cohen, M. (1978), "The 'heterosis' finite element for plate bending", Comput. Struct., 9(5), 445-450. https://doi.org/10.1016/0045-7949(78)90041-X
- Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Development of finite elements for two- dimensional structural analysis using Integrated Force Method", Comput. Struct., 59(4), 691-706. https://doi.org/10.1016/0045-7949(95)00294-4
- Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Three dimensional structural analysis by Integrated Force Method", Comput. Struct., 58(5), 869-886. https://doi.org/10.1016/0045-7949(95)00171-C
- Kanber, B. and Bozkurt. Y. (2006), "Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements", Acta Mechanica Sinica, 22, 355-365. https://doi.org/10.1007/s10409-006-0012-y
- Kaneko, L., Lawo, H. and Thierauf G. (1983), "On computational procedures for the force method", Int. J. Numer. Meth. Eng., 18, 1469-1495.
- Krishnam Raju, N.R.B. and Nagabhushanam, J. (2000), "Non-linear structural analysis using integrated force method", Sadhana J., 25(4), 353-365. https://doi.org/10.1007/BF03029720
- Lee, S.W. and Wong, S.C. (1982), "Mixed formulation finite elements for Mindlin theory plate bending", Int. J. Numer. Meth. Eng., 18, 1297-1311. https://doi.org/10.1002/nme.1620180903
- Liu, J., Riggs, H.R. and Tessler, A. (2000), "A four node shear-deformable shell element developed via explicit Kirchhoff constraints", Int. J. Numer. Meth. Eng., 49, 1065-1086. https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
- Morley, L.S.D. (1963), Skew plates and structures, Pergamon press, Oxford.
- Nagabhushanam, J. and Patnaik, S.N. (1990), "General purpose program to generate compatibility matrix for the integrated force method", AIAA J., 28, 1838-1842. https://doi.org/10.2514/3.10488
- Nagabhushanam, J. and Srinivas, J. (1991), "Automatic generation of sparse and banded compatibility matrix for the Integrated Force Method", Comput. Mech. '91, Int. Conference on Comput. Eng. Scei., Patras, Greece.
- NISA Software and manual (Version 9.3)
- Ozgan, K. and Daloglu, A.T. (2007), "Alternate plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86. https://doi.org/10.12989/sem.2007.26.1.069
- Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 41, 237-251.
- Patnaik, S.N. (1986), "The variational energy formulation for the Integrated Force Method", AIAA J., 24,129- 137. https://doi.org/10.2514/3.9232
- Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method verses displacement method for finite element analysis", Comput. Struct., 38(4), 377-407. https://doi.org/10.1016/0045-7949(91)90037-M
- Patnaik, S.N., Coroneos, R.M. and Hopkins, D.A. (2000), "Compatibility conditions of structural mechanics", Int. J. Numer. Meth. Eng., 47, 685-704. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<685::AID-NME788>3.0.CO;2-Y
- Patnaik, S.N. Hopkins, D.A. and Coroneos, R. (1986), "Structural Optimization with approximate sensitivities", Comput. Struct., 58, 407-418.
- Patnaik, S.N. and Yadagiri, S. (1976), "Frequency analysis of structures by Integrated Force Method", Comput. Meth. Appli. Mech. Eng., 9, 245-265. https://doi.org/10.1016/0045-7825(76)90030-X
- Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", A.I.A.A J., 2, 1333-1336.
- Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meth. Eng., 19, 1741-1752.
- Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, McGraw Hill, New York.
- Razzaque, A. (1973), "Program for triangular plate bending element with derivative smoothing", Int. J. Numer. Meth. Eng., 6, 333-345. https://doi.org/10.1002/nme.1620060305
- Reissner, E. (1945), "The effect of transverse shear deformation on bending of plates", J. Appl. Mech., 12, A69-A77.
- Robinson, J. (1973), Integrated Theory of Finite Elements Methods, Wiley, New York
- Spilker, R.L. (1982), "Invariant 8-node hybrid-stress elements for thin and moderately thick plates", Int. J. Numer. Meth. Eng., 18, 1153-1178. https://doi.org/10.1002/nme.1620180805
- Kim, S.H. and Choi, C.K. (2005), "Modeling of Plates and Shells: Improvement of quadratic finite element for Mindlin plate bending", Int. J. Numer. Meth. Eng., 34(1), 197-208.
- Timoshenko, S.P. and Krieger, S.W. (1959), Theory of plates and shells, Second Edition, McGraw Hill International Editions.
- Tong, P. (1970), "New displacement hybrid finite element models for solid continua", Int. J. Numer. Meth. Eng., 2, 73-83. https://doi.org/10.1002/nme.1620020108
Cited by
- Application of the dual integrated force method to the analysis of the off-axis three-point flexure test of unidirectional composites vol.50, pp.3, 2016, https://doi.org/10.1177/0021998315576377
- Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review vol.24, pp.12, 2017, https://doi.org/10.1080/15376494.2016.1196798
- Comparison between the stiffness method and the hybrid method applied to a circular ring vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1013-z