• Title/Summary/Keyword: bending and buckling

Search Result 444, Processing Time 0.022 seconds

Evaluation of Flexural Strength of Hybrid Girder composed of HSB800 and HSB600 Steel (HSB800 및 HSB600 강재를 적용한 하이브리드거더의 휨강도 평가)

  • Park, Yong Myung;Kang, Ji Hoon;Lee, Kun Joon;Kim, Hee Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.581-594
    • /
    • 2014
  • In this paper, flexural resistance of hybrid girder under uniform bending moment was evaluated, which is composed of HSB800 and HSB600 steel for the flange and web, respectively. Doubly-symmetric and monosymmetric sections with noncompact or compact flange and slender, noncompact or compact web were considered. Nonlinear analyses with 3-dim. shell element model were performed to determine the 'flexural resistance of section' and the 'lateral torsional buckling strength' by taking initial imperfection and residual stress into account. The numerical results were compared with the AASHTO LRFD and Eurocode 3 specifications and also the applicability of AASHTO LRFD appendix A6 was examined for the sections with noncompact and compact web.

A Study of Structural Stability and Dynamics for Functionally Graded Material Plates and Shells using a 4-node Quasi-conforming Shell Element (4절점 준적합 쉘 요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동 연구)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.47-60
    • /
    • 2007
  • In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalue of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane, bending and shear stiffness of FGM shell element are more complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier's solutions of rectangular plates based on the first-order shear deformation theory are presented. The present numerical solutions of composite and sigmoid FGM (S-FGM) plates are proved by the Navier's solutionsand various examples of composite and FGM structures are presented. The present results are in good agreement with the Navier's theoretical solutions.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Mechanical properties and 3D CAD Images of the Appearance of Cotton/Polyester Composite Yarn Knitted Fabric by Different Yarn Twisting Methods (연사방법에 따른 면/폴리에스테르 복합사 편성물의 역학적 특성 및 3D CAD System에 의한 외관특성)

  • Kim So-Jin;Jeon Dong-Won;Park Young-Hwan
    • Textile Coloration and Finishing
    • /
    • v.18 no.3 s.88
    • /
    • pp.49-58
    • /
    • 2006
  • The purpose of this study was to examine the effect of covering yarn's twist on mechanical properties of knitted fabrics of composite yarns with single covering process. Four yarns that were used in this study: two different composite yarns made from the four kinds of cotton and functional polyester-(Poly-A) with the ratio of 52:48, and the rest two yarns are the original cotton 100% yarn and the poly-A 100% yarn. The two kinds of composite yarns, CP1 and CP2, were processed on the single covering process. CP1 was applied on the single covering process with S-800 tpm, where Poly-A was used as covering yarn and cotton was used as core yarn. CP2 was applied on the same process as CP1 except that Poly-A had been applied on the two-for-one twisting process with S-400 tpm on the previous step. Sixteen mechanical properties of all the four knifed fabrics knitted under the same knitting conditions were measured by KES-FB system with the outer knit condition. And 3D CAD dressmaking simulations, which were driven by some of the mechanical properties, were presented. The results were as follows: CP2 had high RT values with twisting of covering yarn. CP2 also had high B, 2HB values because of higher linear density. SMD was affected rather by twisting of covering yarn than by fine hair of the cotton surface. Twisting of covering yarn made it decreasing T value and increasing W value. Dressmaking 3D CAD simulations showed that there are buckling effects on CP2 because of high bending rigidity and shear rigidity.

A Study on Adhesive Joints for Composite Driveshafts (복합재료 동력전달축의 접착조인트에 관한 연구)

  • 김진국;이대길;최진경;김일영
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece driveshafts composed of carbon/epoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesive joint was used to join the composite shaft and the aluminum yoke. The torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element analysis and compared with the experimental result. Torque transmission capability was based on the Tsai-Wu failure index fur composite shaft and the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and the finite element analyses, it was found that the static torque transmission capability of the composite driveshaft was highest at the critical yoke thickness, and saturated beyond the critical length. Also, it was found that the one-piece composite driveshaft had 40% weight saving effect compared with a conventional two-piece steel driveshaft.

  • PDF

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam ( I ) The Investigation of Propriety for Model of Beam-to-Column Joint with Key Parameters, such as Section Type and Axial Force Ratio (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구( I ) -단면형상 및 축력비를 변수로 한 접합부 모델의 적합성 검토-)

  • Park, Jung Min;Kim, Wha Jung;Moon, Tae Sup;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.85-94
    • /
    • 1996
  • This paper investigated structural behaviors of joint of concrete filled steel tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. The results are summarised as follows: (1) The joint stiffness of concrete filled square steel tube column and P.C reinforecd beam was higher than that of concrete filled circular steel tube column and P.C reinforecd beam, and it was decreased as the increase of the number of hysteretic cycle. (2) The aspects of the hysteretic behavior in the joint was stable as the increase of the number of hysteretic cycle, and rotation resisting capacity of joint of concrete filled square steel tube column and P.C reinforced concrete beam was higher than those of the concrete filled circular steel tube column and P.C reinforced concrete beam. (3) Some restriction must be put upon the ratio of axial force in this joint model because the load carrying capacity was decreased by flexural and flexural-torsional buckling in case of the ratio of axial force 0.6. (4) The emprical formula to predict the ultimate capacity of joint model to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

Retrofitted built-up steel angle members for enhancing bearing capacity of latticed towers: Experiment

  • Wang, Jian-Tao;Wu, Xiao-Hong;Yang, Bin;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.681-695
    • /
    • 2021
  • Many existing transmission or communication towers designed several decades ago have undergone nonreversible performance degradation, making it hardly meet the additional requirements from upgrades in wind load design codes and extra services of electricity and communication. Therefore, a new-type non-destructive reinforcement method was proposed to reduce the on-site operation of drilling and welding for improving the quality and efficiency of reinforcement. Six built-up steel angle members were tested under compression to examine the reinforcement performance. Subsequently, the cyclic loading test was conducted on a pair of steel angle tower sub-structures to investigate the reinforcement effect, and a simplified prediction method was finally established for calculating the buckling bearing capacity of those new-type retrofitted built-up steel angles. The results indicates that: no apparent difference exists in the initial stiffness for the built-up specimens compared to the unreinforced steel angles; retrofitting the steel angles by single-bolt clamps can guarantee a relatively reasonable reinforcement effect and is suggested for the reduced additional weight and higher construction efficiency; for the substructure test, the latticed substructure retrofitted by the proposed reinforcement method significantly improves the lateral stiffness, the non-deformability and energy dissipation capacity; moreover, an apparent pinching behavior exists in the hysteretic loops, and there is no obvious yield plateau in the skeleton curves; finally, the accuracy validation result indicates that the proposed theoretical model achieves a reasonable agreement with the test results. Accordingly, this study can provide valuable references for the design and application of the non-destructive upgrading project of steel angle towers.

Characterization of thermally driven polysilicon micro actuator (폴리실리콘 마이크로 액츄에이터의 열구동 특성분석)

  • Lee, Chang-Seung;Lee, Jae-Youl;Chung, Hoi-Hwan;Lee, Jong-Hyun;Yoo, Hyung-Joun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.2004-2006
    • /
    • 1996
  • A thermally driven polysilicon micro actuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS (tetracthylorthosilicate) as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE (vapor phase etching) process was also used as an effective release method for the elimination of sacrificial TEOS layer. The thickneas of polysilicon is $2{\mu}m$ and the lengths of active and passive polysilicon cantilevers are $500{\mu}m$ and $260{\mu}m$, respectively. The actuation is incurred by die thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon micro actuator was experimentally conformed as large as $21{\mu}m$ at the input voltage level of 10V and 50Hz square wave. The actuating characteristics are investigated by simulating the phenomena of heat transfer and thermal expansion in the polysilicon layer. The displacement of actuator is analyzed to be proportional to the square of input voltage. These micro actuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as micro relay, which requires large displacement or contact force but relatively slow response.

  • PDF

Resistance of Web-Separated Diagrid Nodes Subjected to Cyclic Loading (반복하중에 대한 웨브전이형 다이아그리드 노드의 구조적 특성)

  • Kim, Young Ju;Jung, In Yong;Ju, Young K.;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.257-266
    • /
    • 2009
  • The results of the analysis of the structural behavior of diagrid nodes that were subjected to cyclic loads such as wind and earthquakes was not fully understood due to difficulties in considering the welding type. In this study, diagrid nodes were tested to determine their behavior when they are subjected to seismic or wind loads. Five specimens were designed and fabricated. The corresponding test parameters were the welding type for each point and the length of the overlap of the side stiffener and the brace web. Tensile force was applied to one diagrid brace member, and compression force was applied to the other diagrid brace member. Cyclic loading was applied until the failure. The test showed that failures are due to axial stress from axial force and the additional bending moment of the two combined axial forces that have different directions. Tensile failure was observed from the tensile force, and local buckling was observed from the compressive force at the flange of the brace member. In addition, the welding type and the length overlap affected the initial stiffness, the yielding stress, and the energy absorption of the diagrid node.