• Title/Summary/Keyword: bending and buckling

Search Result 445, Processing Time 0.021 seconds

Acoustic Emission Characteristic with Local Wall Thinning under Static and Cyclic Bending Load (정적 및 반복굽힘하중을 받는 감육된 탄소강배관의 AE 특성 평가)

  • Ahn, Seok-Hwan;Kim, Jin-Hwan;Nam, Ki-Woo;Park, In-Duck;Kim, Yong-Un
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.134-139
    • /
    • 2002
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. However, effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. In this study, we investigated failure modes of locally wall thinned pipes and AE signals by bending test. From test results, we could be divided four types of failure modes of ovalization, crack initiation after ovalization, local buckling and crack initiation after local buckling. And fracture behaviors such as elastic region, yielding range, plastic deformation range and crack progress could be evaluated by AE counts, accumulative counts and time-frequency analysis during bending test. It is expected to be basic data that can protect a risk according to local wall thinning of pipes, as a real time test of AE.

  • PDF

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.

Viscoplastic response and collapse of 316L stainless steel tubes under cyclic bending

  • Chang, Kao-Hua;Hsu, Chien-Min;Sheu, Shane-Rong;Pan, Wen-Fung
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.359-374
    • /
    • 2005
  • This paper presents the experimental and theoretical results of the viscoplastic response and collapse of 316L stainless steel tubes subjected to cyclic bending. The tube bending machine and curvature-ovalization measurement apparatus, which was designed by Pan et al. (1998), were used for conducting the cyclic curvature-controlled experiment. Three different curvature-rates were controlled to highlight the characteristic of viscoplastic response and collapse. Next, the endochronic theory and the principle of virtual work were used to simulate the viscoplastic response of 316L stainless steel tubes under cyclic bending. In addition, a proposed theoretical formulation (Lee and Pan 2001) was used to simulate the relationship between the controlled cyclic curvature and the number of cycles to produce buckling under cyclic bending at different curvature-rates (viscoplastic collapse). It has been shown that the theoretical simulations of the response and collapse correlate well with the experimental data.

Analytical study of elastic lateral-torsional buckling of castellated steel beams under combined axial and bending loads

  • Saoula Abdelkader;Abdelrahmane B. Benyamina;Meftah Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.343-356
    • /
    • 2024
  • This paper presents an analytical solution for correctly predicting the Lateral-Torsional Buckling critical moment of simply supported castellated beams, the solution covers uniformly distributed loads combined with compressive loads. For this purpose, the castellated beam section with hexagonal-type perforation is treated as an arrangement of double "T" sections, composed of an upper T section and a lower T section. The castellated beam with regular openings is considered as a periodic repeating structure of unit cells. According to the kinematic model, the energy principle is applied in the context of geometric nonlinearity and the linear elastic behavior of materials. The differential equilibrium equations are established using Galerkin's method and the tangential stiffness matrix is calculated to determine the critical lateral torsional buckling loads. A Finite Element simulation using ABAQUS software is performed to verify the accuracy of the suggested analytical solution, each castellated beam is modelled with appropriate sizes meshes by thin shell elements S8R, the chosen element has 8 nodes and six degrees of freedom per node, including five integration points through the thickness, the Lanczos eigen-solver of ABAQUS was used to conduct elastic buckling analysis. It has been demonstrated that the proposed analytical solution results are in good agreement with those of the finite element method. A parametric study involving geometric and mechanical parameters is carried out, the intensity of the compressive load is also included. In comparison with the linear solution, it has been found that the linear stability underestimates the lateral buckling resistance. It has been confirmed that when high axial loads are applied, an impressive reduction in critical loads has been observed. It can be concluded that the obtained analytical solution is efficient and simple, and offers a rapid and direct method for estimating the lateral torsional buckling critical moment of simply supported castellated beams.

Behaviour of cold-formed steel hollow and concrete-filled members

  • Jane Helena, H.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.35-47
    • /
    • 2005
  • This paper presents the results of a series of tests carried out on hollow and concrete-filled coldformed steel sections subjected to axial and bending forces. The effects of eccentricity ratio and strength of in-fill on the behaviour of these sections were studied. A total of forty-eight medium sized columns and six beams were tested to failure. Extensive measurements of material properties, strains, axial shortening and lateral deflection were carried out. Interaction of local and overall buckling was observed in the tests. Failure mode observations were local buckling coupled with overall buckling. A description of the specially fabricated end fixtures for applying eccentric loading to the columns and to simulate pinned end condition is also presented. The experimental results of hollow columns are compared with the existing Indian, British and American codes of practice and the results of concrete-filled columns are compared with EC4 recommendations. It is seen that in the case of hollow columns predictions based on British and American codes of practice and in the case of concrete-filled columns predictions based on EC4 recommendations agree reasonably well with the experimental results. From the experiments it is seen that the provision of in-fill substantially increases the ultimate load carrying capacity of the order of one and a half to two times and the increase in strength of the in-filled concrete from a low grade concrete of compressive strength 24.94 MPa to a high grade concrete of compressive strength 33.26 MPa increases the ultimate load carrying capacity by one and a half times irrespective of the eccentricity of loading.

Seismic performance of L-shaped RC walls sustaining Unsymmetrical bending

  • Zhang, Zhongwen;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.269-280
    • /
    • 2021
  • Reinforced concrete (RC) structural walls with L-shaped sections are commonly used in RC buildings. The walls are often expected to sustain biaxial load and Unsymmetrical bending in an earthquake event. However, there currently exists limited experimental evidence regarding their seismic behaviour in these lateral loading directions. This paper makes experimental and numerical investigations to these walls behaviours. Experimental evidences are presented for four L-shaped wall specimens which were tested under simulated seismic load from different lateral directions. The results highlighted some distinct behaviour of L-shaped walls sustaining Unsymmetrical bending relating to their seismic performance. First, due to the Unsymmetrical bending, out-of-plane reaction forces occur for these walls, which contribute to accumulation of the out-of-plane deformations of the wall, especially when out-of-plane stiffness of the section is reduced by horizontal cracks in the cyclic load. Secondly, cracking was found to affect shear centre of the specimens loaded in the Unsymmetrical bending direction. The shear centre of these specimens distinctly differs in the flange in the positive and negative loading direction. Cracking of the flange also causes significant warping in the bottom part of the wall, which eventually lead to out-of-plane buckling failure.

Experimental and Numerical Study on the Elastic-Plastic, Large Deflection, Post-Buckling Behavior of Axially Compressed Circular Cylindrical Tubes (축방향 압축력을 받는 원통형 박막소재의 좌굴후 탄소성 대변형에 관한 실험 및 해석 연구)

  • Kwon, Se-Mun;Yun, Hee-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.969-974
    • /
    • 2001
  • Circular cylindrical tubes are widely used in structures such as vehicles and aircraft structures, where light weight and high compressive/bending/torsional load carrying capacity are required. When axially compressed, relatively thick circular cylindrical tubes deform in a so-called ring mode. Each ring develops and completely collapses one by one until the entire length of the tube collapses. During the collapse process the tube absorbs a large amount of energy. Like honey-comb structures, circular cylindrical tubes are light weighted, are capable of high axial compressive load, and absorb a large amount of energy before being completely collapsed. In this report, the subject of axial plastic buckling of circular cylindrical tubes was reviewed first. Then, the axial collapse process of the tubes in a so-called ring mode was studied both experimentally and numerically. In the experiment, steel tubes were axially compressed slowly until they were completely collapsed. Fixed boundary condition was provided. Numerical study involves axisymmetric, elastic-plastic, large deflection, self-contact mechanisms. The measured and calculated results were presented and compared with each other. The purpose of the study was to evaluate the load carrying capacity and the energy absorbing capacity of the tube.

  • PDF

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

Elastic buckling of end-loaded, tapered, cantilevered beams with initial curvature

  • Wilson, James F.;Strong, Daniel J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.257-268
    • /
    • 1997
  • The elastic deflections and Euler buckling loads are investigated for a class of tapered and initially curved cantilevered beams subjected to loading at the tip. The beam's width increases linearly and its depth decreases linearly with the distance from the fixed end to the tip. Unloaded, the beam forms a circular are perpendicular to the axis of bending. The beam's deflection responses, obtained by solving the differential equations in closed form, are presented in terms of four nondimensional system parameters: taper ratio ${\kappa}$, initial shape ratio ${\Delta}_0$, end load ratio f, and load angle ${\theta}$. Laboratory measurements of the Euler buckling loads for scale models of tapered initially straight, corrugated beams compared favorably with those computed from the present analysis. The results are applicable to future designs of the end structures of highway guardrails, which can be designed to give the appropriate balance between the capacity to deflect a nearly head-on vehicle back to its right-of-way and the capacity to buckle sufficiently that penetration of the vehicle may be averted.