• Title/Summary/Keyword: behavior algorithm

Search Result 1,492, Processing Time 0.027 seconds

Male-Silkmoth-Inspired Routing Algorithm for Large-Scale Wireless Mesh Networks

  • Nugroho, Dwi Agung;Prasetiadi, Agi;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.384-393
    • /
    • 2015
  • This paper proposes an insect behavior-inspired routing algorithm for large-scale wireless mesh networks. The proposed algorithm is adapted from the behavior of an insect called Bombyx mori, a male silkmoth. Its unique behavior is its flying technique to find the source of pheromones. The algorithm consists of two steps: the shortest-path algorithm and the zigzag-path algorithm. First, the shortest-path algorithm is employed to transmit data. After half of the total hops, the zigzag-path algorithm, which is based on the movement of the male B. mori, is applied. In order to adapt the biological behavior to large-scale wireless mesh networks, we use a mesh topology for implementing the algorithm. Simulation results show that the total energy used and the decision time for routing of the proposed algorithm are improved under certain conditions.

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

  • Jung, Sung-Hoon;Kim, Tae-Geon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2008
  • This paper proposes a novel optimization algorithm inspired by bacteria behavior patterns for foraging. Most bacteria can trace attractant chemical molecules for foraging. This tracing capability of bacteria called chemotaxis might be optimized for foraging because it has been evolved for few millenniums. From this observation, we developed a new optimization algorithm based on the chemotaxis of bacteria in this paper. We first define behavior and decision rules based on the behavior patterns of bacteria and then devise an optimization algorithm with these behavior and decision rules. Generally bacteria have a quorum sensing mechanism that makes it possible to effectively forage, but we leave its implementation as a further work for simplicity. Thereby, we call our algorithm a simple bacteria cooperative optimization (BCO) algorithm. Our simple BCO is tested with four function optimization problems on various' parameters of the algorithm. It was found from experiments that the simple BCO can be a good framework for optimization.

Driver Adaptive Control Algorithm for Intelligent Vehicle (운전자 주행 특성 파라미터를 고려한 지능화 차량의 적응 제어)

  • Min, Suk-Ki;Yi, Kyong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1146-1151
    • /
    • 2003
  • In this paper, results of an analysis of driving behavior characteristics and a driver-adaptive control algorithm for adaptive cruise control systems have been described. The analysis has been performed based on real-world driving data. The vehicle longitudinal control algorithm developed in our previous research has been extended based on the analysis to incorporate the driving characteristics of the human drivers into the control algorithm and to achieve natural vehicle behavior of the adaptive cruise controlled vehicle that would feel comfortable to the human driver. A driving characteristic parameters estimation algorithm has been developed. The driving characteristics parameters of a human driver have been estimated during manual driving using the recursive least-square algorithm and then the estimated ones have been used in the controller adaptation. The vehicle following characteristics of the adaptive cruise control vehicles with and without the driving behavior parameter estimation algorithm have been compared to those of the manual driving. It has been shown that the vehicle following behavior of the controlled vehicle with the adaptive control algorithm is quite close to that of the human controlled vehicles. Therefore, it can be expected that the more natural and more comfortable vehicle behavior would be achieved by the use of the driver adaptive cruise control algorithm.

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

Environment Monitoring Algorithm using Behavior-Based Multiple Robot System (행동기반 다개체 로봇 시스템을 이용한 환경감시 알고리즘)

  • Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.622-628
    • /
    • 2012
  • This paper proposes an environment monitoring algorithm using a behavior-based multiple robot system. This paper handles an escort and a boundary-tracking especially. Unlike previous research works, the proposed environment monitoring system which is based on the behavior-based multiple robot control allows the system to employ the reusable code and general algorithm. Also, the proposed method can be applied to cheaper process with low performances. In the proposed method, escort and boundary-tracking missions are constructed by weighted sum of predefined basic behaviors after redefining the basic behaviors in previous works and introducing the novel basic behavior. Simulation results of the proposed method are included to demonstrate the practical application of the proposed algorithm.

Convergence of the Filtered-x Least Mean Fourth Algorithm for Active Noise Control (능동 소음 제어를 위한 Filtered-x 최소 평균 네제곱 알고리듬의 수렴분석)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.616-625
    • /
    • 2002
  • In this paper, we drove the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyzed its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. The application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

An Optimized User Behavior Prediction Model Using Genetic Algorithm On Mobile Web Structure

  • Hussan, M.I. Thariq;Kalaavathi, B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1963-1978
    • /
    • 2015
  • With the advancement of mobile web environments, identification and analysis of the user behavior play a significant role and remains a challenging task to implement with variations observed in the model. This paper presents an efficient method for mining optimized user behavior prediction model using genetic algorithm on mobile web structure. The framework of optimized user behavior prediction model integrates the temporary and permanent register information and is stored immediately in the form of integrated logs which have higher precision and minimize the time for determining user behavior. Then by applying the temporal characteristics, suitable time interval table is obtained by segmenting the logs. The suitable time interval table that split the huge data logs is obtained using genetic algorithm. Existing cluster based temporal mobile sequential arrangement provide efficiency without bringing down the accuracy but compromise precision during the prediction of user behavior. To efficiently discover the mobile users' behavior, prediction model is associated with region and requested services, a method called optimized user behavior Prediction Model using Genetic Algorithm (PM-GA) on mobile web structure is introduced. This paper also provides a technique called MAA during the increase in the number of models related to the region and requested services are observed. Based on our analysis, we content that PM-GA provides improved performance in terms of precision, number of mobile models generated, execution time and increasing the prediction accuracy. Experiments are conducted with different parameter on real dataset in mobile web environment. Analytical and empirical result offers an efficient and effective mining and prediction of user behavior prediction model on mobile web structure.

A Study on System's Reliability Evaluation Using DFT Algorithm (동적 결함 트리 (Dynamic Fault Tree) 알고리즘을 이용한 시스템의 신뢰도 평가에 관한 연구)

  • 김진수;양성현;이기서
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.280-287
    • /
    • 1998
  • In this paper, Dynamic Fault Tree algorithm(DFT algorithm) is presented. This new algorithm provides a concise representation of dynamic fault tolerance system structure with redundancy, dynamic redundancy management and complex fault & error recovery techniques. And it allows the modeler to define a dynamic fault tree model with the relative advantages of both fault tree and Markov models that captures the system structure and dynamic behavior. This algorithm applies to TMR and Dual-Duplex systems with the dynamic behavior and show that this algorithm captured the dynamic behavior in these systems with fault & error recovery technique, sequence-dependent failures and the use dynamic spare. The DFT algorithm for solving the problems of the systems is more effective than the Markov and Fault tree analysis model.

  • PDF

Behavior Analysis Method for Fishes in a Water Tank Using Image Processing Technology

  • Kim, Hwan-Seong;Kim, Hak-Kyeong;Jeong, Nam-Soo;Kim, Sang-Bong
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.111-118
    • /
    • 2003
  • This paper proposes a two dimensional behavior analysis method for fish in a water tank based on the ARX method and the Kalman filter algorithm using image processing technology. In modeling the behavior of fish, the input is denoted as the environmental change and uses M-sequence. The output is expressed by the partnership between fish. The behavior model of individual fish is identified by the ARX method. It is then estimated by the Kalman filter algorithm. Finally, the fish behavior is analyzed by FFT. To prove the effectiveness of the pro-posed algorithm, it is applied to two tilapias in a water tank with dimensions of 100cm$\times$100cm$\times$50cm. The effectiveness of the proposed method is demonstrated through ARX identification, estimation of Kalman filter, and FFT analysis.

Autonomous Mobile Robot Navigation using Artificial Immune Networks and Fuzzy Systems (인공 면역망과 퍼지 시스템을 이용한 자율이동로봇 주행)

  • Kim, Yang-Hyeon;Lee, Dong-Je;Lee, Min-Jung;Choe, Yeong-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.402-412
    • /
    • 2002
  • The navigation algorithms enable autonomous mobile robots to reach given target points without collision against obstacles. To achieve safe navigations in unknown environments, this paper presents an effective navigation algorithm for the autonomous mobile robots with ultrasonic sensors. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The fuzzy-based decision maker combines the steering angles from the target-reaching behavior and the obstacle-avoidance behavior in order to steer the autonomous mobile robot appropriately. Simulational and experimental results show that the proposed navigation algorithm is very effective in unknown environments.