• Title/Summary/Keyword: bedrock topographic

Search Result 13, Processing Time 0.031 seconds

Seafloor Topographic Survey with Bedrock (기반암 정보를 포함한 해저 지형 조사 연구)

  • Kim, Myoung-Bae;Kwak, Kang-Yul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.343-349
    • /
    • 2011
  • Seabed topography and marine site survey should be performed first in the design and construction of marine structures. We could successfully acquire the seafloor topography information can be obtained by bathymetric survey and side scan sonar and the sediment layer thickness and 3D bedrock depth by seismic reflection. It is necessary to apply carry out the integrated interpretation to each other in the ocean civil Eng. In this paper, we have obtained information on the sea bottom topography and water depth at the same time using interferometer technique and on the basement depth by seismic reflection. We have performed to assess the proposed method on the seafloor topographic survey with bedrock.

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

Mechanism of the Marine Terraces Formation on the Southeastern Coast in Korea (한국 남동해안 해안단구의 지형형성 mechanism)

  • 윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.35 no.1
    • /
    • pp.17-38
    • /
    • 2000
  • The marine terraces often offer come important clues to understand the topographic development during the Quaternary and the present landforms in korea. We examined the mechanism of the marine terraces formation along the coast from Samjung-Ri(community), Guryongpo-Eup(county) to Haseo-Ri, Yangnam-Myun(county), Gyungju-Si(city). Among the various but unique factors of the given coastal environment, which should contribute to the marine terraces formation together, we focused on five possible factors for the present stydy. Geologic difference in bedrocks, protrusion degree of coastiline, topological relief of sea-bottom, fluvial characteristics on land, and pattern of the waves appeared to act cooperatibely on the terrace formation of Southeastem coast in korea, while the fluvial characteristics seemed play a significant but localized role in it. Wide distribution of middle surfaces on the coast of Samjungri-Janggilri could be due to the concentration of the high waves and the weakness of the Tertiary volcanic rocks. For the sporadic distribution of the terraces on the coast of Gupungri-Gyewonri, it seemed attributable to the erosion -susceptible weak bedrock, the coastline of inner bay, shallow sea-bottom with the gentle relief, and other fluvial characteristics with the low divides. Together with the geologic difference in bedrock, other factors including protrusion degree of coast, topological relief of sea-bottom, and the transportation loads by the stream Daejongchon are believed to act cooperatively on the mechanism of the marine terraces formation on the coast of Duwonri-Upchonri.

  • PDF

A Theoretical Study on the Landscape Development by Different Erosion Resistance Using a 2d Numerical Landscape Evolution Model (침식저항도 차이에 따른 지형발달 및 지형인자에 대한 연구 - 2차원 수치지형발달모형을 이용하여 -)

  • Kim, Dong-Eun
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.541-550
    • /
    • 2022
  • A pre-existing landform is created by weathering and erosion along the bedrock fault and the weak zone. A neotectonic landform is formed by neotectonic movements such as earthquakes, volcanoes, and Quaternary faults. It is difficult to clearly distinguish the landform in the actual field because the influence of the tectonic activity in the Korean Peninsula is relatively small, and the magnitude of surface processes (e.g., erosion and weathering) is intense. Thus, to better understand the impact of tectonic activity and distinguish between pre-existing landforms and neotectonic landforms, it is necessary to understand the development process of pre-existing landforms depending on the bedrock characteristics. This study used a two-dimensional numerical landscape evolution model (LEM) to study the spatio-temporal development of landscape according to the different erodibility under the same factors of climate and the uplift rate. We used hill-slope indices (i.e., relief, mean elevation, and slope) and channels (i.e., longitudinal profile, normalized channel steepness index, and stream order) to distinguish the difference according to different bedrocks. As a result of the analysis, the terrain with high erosion potential shows low mean elevation, gentle slope, low stream order, and channel steepness index. However, the value of the landscape with low erosion potential differs from that with high erodibility. In addition, a knickpoint came out at the boundary of the bedrock. When researching the actual topography, the location around the border of difference in bedrock has only been considered a pre-existing factor. This study suggested that differences in bedrock and various topographic indices should be comprehensively considered to classify pre-existing and active tectonic topography.

Comparison ofrock weathering propertiesfrom mountain and valley areas of homogeneous bedrock areas (동일 기반암 지역에서 산지와 곡지 암석의 풍화 특성 비교)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • This study estimates relationships between physical and chemical weathering indices of various rock types and topographical relief. Physical weathering properties such as rock strength and joint and chemical weathering indices such as the $SiO_2/Al2O_3$, CIA and WPI were analyzed from 18 rock outcrops in mountain and valley areas consisting of 9 rock types. The results indicate that the elevation and relief of topography increase physical strength of rock increases. It can be suggested that the total r(rock-mass strength rating) and R(rock rebound strength by Schmidt Hammer) are most useful indices as a quantitative weathering property factor to explain formative causes of topographical relief. The results also suggest that rock types such as sandstone, granite, gneiss and schist are most suitable to explain meaningful difference in topographical relief with the physical and chemical weathering indices.

Analysis of Quaternary Sedimentary Environment based on 3D Geological Modeling for Saban-ri, Haeri-myeon, Gochang (고창군 해리면 사반리 일대 3차원 지질모델링을 활용한 제4기 퇴적환경분석)

  • Shin, Haein;Yu, Jaehyung;Bae, Sungji;Yang, Dongyoon;Han, Min
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2016
  • This study examined stratigraphic research containing extreme climate event during Quaternary period in Saban-ri, Haeri-myeon, Gochang by constructing 3D topographic model and 3D geological model. As a result of 3D topographic model and subsurface geological model, the geology of study area accumulated bedrock, Pleistocene series, and Holocene series chronologically. Most of the study area consist of bedrock on basement and Holocene series on upper layer. Additionally, Pleistocene series are presented as lens-shaped deposit on eastern part, and wedge-shaped deposit on northeastern part. Holocene layers consist of sand and clay-silt layer deposited sequentially where implies fluvial deposits on transgression environment. Distinctively, Pleistocene clayey silt layer and Holocene sand layer on eastern are observed as pond shape deposits that are considered as storm-related deposits originated from overwash system caused by extreme paleoclimate.

Critical Comments on Akagki's Pediment Morphology in Korea (한국 Pediment 지형의 연구성과에 관한 비판과 문제점)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.99-120
    • /
    • 2005
  • It is a wrong decision to use only topographic and geological maps for the study of pediment morphology in Korea. For the study of pediment morphology it is necessary to survey the earth structure by field techniques. In Korea, pediments are mostly found in granite areas with hardrock cover. But, pediments also developed in gneiss areas and what is worse in limestone areas. So, all areas in Korea developed pediment morphology. Only in South Korea pediments show a direction from south to north or from west to east. They developed only in right angles to each other, either parallel or in right angles to the strike, depending on the bedrock structure. Pediments are found in two levels. The upper level pediments are correlated with the lower level erosion surface. Besides this pediments are found in Hoenggye-ri of the Taegwolryong area in a third level 800m above sea level. The pediments developed in basins, at the lower margins of steep slopes dividing three levels of erosion surfaces and around the residual mountains on the erosion surfaces. The first belong to the early stage of pedimentation, the second to the middle stage and the third to the last stage. Also, in Korea monadnock and residual mountain have developed the pediments are correlated the slope of the hinter mountains. Akagki states that the only pedimentation times have been times of arid climate and that they are dissected by gulley erosion with climatic change, but writer's study proves that pedimentation takes place with eustatic movement, reckless defore-station and convectional rain. These facts indicate that the landforms, geological character and process of erosional cycle of the pediments in Korea resemble much those in the Chugoku Mountains of south wertern Japan, but they are larger in scale than those in the Chugoku Mountains. In conclusion, while Akagki emphasizes the geological character and climatic change in pedimentation, the writer studies prove that eustatic movements, especially the sea level rise after the Wurm age are important factors for pedimentation. Besides this the author's studies allow a classification of gentle slopes.

Geological Characteristics of a Wetland in Mt. Geumjeong (금정산 산지습지의 지질학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Ok, Soon-Il
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • This study examined geological characteristics of a wetland in Mountain Geumjeong in Busan Metropolitan City. Field survey and laboratory tests were performed to identify topographic features, geological and structural geological characteristics, rock strength along the distance from the wetland, soil profile in the wetland, and chemical property of the wetland soil. The bedrock of the wetland consists of hornblende granite. Hornblende granite and rhyolitic rock around the wetland have the joints with strikes of N-S, E-W, and NE-SW directions and with higher dips greater than $60^{\circ}$. Lower rock strength and higher weathering grades take place towards the wetlands. According to X-ray diffraction analysis of wetland soil samples, kaolinite, montmorillonite, and gibbsite appear which demonstrate weathered products of feldspars in the hornblende granite. The soil profile in the wetland comprises O, A, B, and C horizons from the land surface. The contents of the organic matters decrease from shallow parts to deeper parts of the soil profile. In addition, $K^+$ and $Na^+$ originating from the weathering of feldspars are dominant components among inorganic ions in the wetland soil.

Topographic characteristics of Yeonho lake, Uljin-gun, Gyeongsangbuk-do (경북 울진 연호(蓮湖)의 지형적 특성)

  • Woo, Seung-Hyun
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.211-224
    • /
    • 2016
  • Natural lakes are estimated in variety with that's function or value depending on age environment or geographical characteristics. There are many kind of natural lakes, but the kind of natural lake is limited in rivers in korea flowing into East Sea. However, Yeonho lake in Uljin has different geographical characteristics with oxbow lake or lagoon which is common in korea's river flowing into East Sea. Therefore the purpose of this study is to analyze geographical characteristics due to the process of Yeonho's formation. Further more research for protecting wetland is needed to adequately preserve, depending on the geomorpologic process. To analyze geographical characteristics, it was essential to compare and analyze topographical map of 1918 1956 2012 and I pictured estinated line of bedrock and longitudinal section of Nam-dae cheon(Riv) Yeonho cheon(Riv). In addition, I denoted flooded areas through design flood level of Nam-dae cheon(Riv) Yeonho cheon(Riv) and analyzed particle size distribution of deposited sediment due to consider deposit environment. The results of study are as follows. In conclusion, Yeonho lake is floodbasin which was not researched at river flowing into East Sea. Through this study, my opinion is that floodbasin can be formed in the river that is steep and short. I argue that preservation methods will be seeked by geomorphologic process of floodbasin and development of downtown.

  • PDF

Predicting Rainfall Infiltration-Groundwater Flow Based on GIS for a Landslide Analysis (산사태해석을 위한 GIS기반의 강우침투-지하수흐름 예측 기법 제안)

  • Kim, Jung-Hwan;Jeong, Sang-Seom;Bae, Deg-Hyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.75-89
    • /
    • 2013
  • This paper describes a GIS-based geohydrologic methodology, called YSGWF (YonSei GroundWater Flow) for predicting the rainfall infiltration-groundwater flow of slopes. This physical-based model was developed by the combination of modified Green-Ampt model that considers the unsaturated soil parameters and GIS-based raster model using Darcy's law that reflects the groundwater flow. In the model, raster data are used to simulate the three dimensional inclination of bedrock surface as actual topographic data, and the groundwater flow is governed by the slope. Also, soil profile is ideally subdivided into three zones, i.e., the wetting band zone, partially saturated zone, and fully saturated zone. In the wetting band and partially saturated zones the vertical infiltration of water (rainfall) from surface into ground is modeled. When the infiltrated water recharges into the fully saturated zone, the horizontal flow of groundwater is introduced. A comparison between the numerical calculation and real landslide data shows a reasonable agreement, which indicate that the model can be used to simulate real rainfall infiltration-groundwater flow.