• Title/Summary/Keyword: bedrock landslide

Search Result 19, Processing Time 0.03 seconds

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

Analysis on the Characteristics of the Landslide - With a Special Reference on Geo-Topographical Characteristics - (땅밀림 산사태의 발생특성에 관한 분석 - 지형 및 지질특성을 중심으로 -)

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.588-597
    • /
    • 2015
  • This study was carried out to identify the reasons of the landslide by land creeping in South Korea in order to provide basic information for establishing the management plan for prevention. Total 29 sites of landslide areas caused by land creeping were observed in South Korea. Among them, the soil-composition of most frequent landslide areas occurred by land creeping was colluvium landslide as 75.9% (22 sites), followed by clay soil landslide as 10.3% (3 sites), bedrock landslide as 6.9% (2 sites), and weathered rock landslide as 6.9% (2 sites). According to the types of parental rocks, the investigated landslide areas were divided into 3 types: 1) metamorphic rocks including schist, phylite, migmatitic gneiss, quartz schist, pophyroblastic gneiss, leucocratic granite, mica schst, banded gneiss and granitic gneiss, 2) sedimentary rocks including limestone, sandstone or shale and mudstone, 3) igneous rocks such as granite, andesite, rhyolite and masanite. As a result, it was noticed that the landslides occurred mostly at the metamorphic rocks areas (13 sites; 44.8%), followed by sedimentary rock areas (12 sites; 41.4%), and igneous rock areas (4 sites; 13.8%). Looking at the direct causes of the landslide, the anthropological activities (71%) such as cut slopes for quarrying, construction of country house, plant, and road, farming of mountain top, and reservoir construction were the biggest causes of the landslides, followed by the land creeping landslides (22%) caused by geological or naturally occurred (22%), and cliff erosions (7%) by caving of rivers and valleys.

A Long-Runout Landslide Triggered by Extreme Rainfall in Gokseong, South Korea on 7 August 2020

  • Nam, Kounghoon;Wang, Fawu;Dai, Zili;Kim, Jongtae;Choo, Chang Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.571-583
    • /
    • 2022
  • On 7 August 2020, a large-scale catastrophic landslide was triggered by extreme rainfall at Osan village, Gokseong County, South Jeolla Province, South Korea. The initiation mechanism of the Gokseong landslide was different from those typical landslides that occurred in South Korea. Despite the relatively low elevation and slope degree, the landslide had a long runout distance of about 640 m over a total vertical distance of 90 m. A detailed field investigation and chemical analysis were conducted to understand the possible mechanisms for the high-speed and long-runout behavior of the landslide. The terrain controlled the motion behavior of the landslide and the seepage was observed at the whole landslide body. The clay-rich soils covered on granite bedrock of the landslide deposition area from the rice paddy field to the landslide crown. The results of this study may provide basic data for further research on the mechanisms for landslide initiation and propagation.

Development of Landslide Hazard Map Using Environmental Information System: Case on the Gyeongsangbuk-do Province (환경정보시스템을 이용한 산사태 발생위험 예측도 작성: 경상북도를 중심으로)

  • Bae, Min-Ki;Jung, Kyu-Won;Park, Sang-Jun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1189-1197
    • /
    • 2009
  • The purpose of this research was develop tailored landslide hazard assessment table (LHAT) in Gyeongsangbuk-do Province and propose building strategies on environmental information system to estimate landslide hazard area according to LHAT. To accomplish this purpose, this research investigated factors occurring landslide at 172 landslide occurred sites in 23 city and county of Gyeongsangbuk-do Province and analyzed what factors effected landslide occurrence quantity using the multiple statistics of quantification method(I). The results of analysis, factors affecting landslide occurrence quantity were shown in order of slope position, slope length, bedrock, aspect, forest age, slope form and slope. And results of the development of LHAT for predict mapping of landslide-susceptible area in Gyeongsangbuk-do Province, total score range was divided that 107 under is stable area(IV class), 107~176 is area with little susceptibility to landslide(III class), 177~246 is area with moderate susceptibility to landslide(II class), above 247 area with severe susceptibility to landslide(I class). According to LHAT, this research built landslide attribute database and made 7 digital theme maps at mountainous area located in Goryeong Gun, Seongju-Gun, and Kimcheon-City. The results of prediction on degree of landslide hazard using environmental information system, area with little susceptibility to landslide(III class) occupied 65.56% and severe susceptibility to landslide(I class) occupied 0.51%.

Analysis on the Characteristics of the Landslide in Maeri (I) - With a Special Reference on Geo-Topographical Characteristics - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (I) - 지형(地形) 및 지질특성(地質特性)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.3 s.160
    • /
    • pp.129-134
    • /
    • 2005
  • Ths study was carried out to understand the geo-topographical characteristics of the landslide area (1.5 ha) in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. The bedrock of the landslide area was diollites and the area in and around the upper slope with the scattered talus was composed of Masanam originated from Igneous rocks. The landslide occurred in 19th of April, 2004 and the amount of rainfall for 3 days before the landslide was 74mm. The landslide by land creeping in this area was mainly attributed to geo-topographical characteristics such as well developed colluvial and/or weathered soils, and land cutting in lower slope, although the landslide could be affected by the rainfall. The type of the landslide can be classified into the land creeping by concave colluvial soils.

Development of the Score Table for Prediction of Landslide Hazard - A Case Study of Gyeongsangbuk-Do Province - (산사태 발생위험 예측을 위한 판정기준표의 작성 -경상북도 지역을 중심으로-)

  • Jung, Kyu-Won;Park, Sang-Jun;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.332-339
    • /
    • 2008
  • This study was carried out to develop the score table for prediction of landslide hazard in Gyeongsangbuk-Do province. It was studied to 172 places landslided in 23 cities and counties of Gyeongsangbuk-Do province. An analyze of the score table for landslide hazard was carried out through the multiple statistics of quantification method (I) by the computer. Factors effected to landslide occurrence quantity were shown in order of slope position, slope length, bedrock, aspect, forest age, slope form and slope. As results of the development of score table for prediction of landslide hazard in Gyeongsangbuk-Do province, total score range was divided that 107 under is stable area (IV class), 107~176 is area with little susceptibility to landslide (III class), 177~246 is area with moderate susceptibility to landslide (II class), above 247 area with severe susceptibility to landslide (I class).

The Development of Landslide Predictive System using Measurement Information based on u-IT (u-IT기반 계측정보를 이용한 급경사지붕괴 예측 시스템 개발)

  • Cheon, Dong-Jin;Park, Young-Jik;Lee, Seung-Ho;Kim, Jeong-Seop;Jung, Do-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5115-5122
    • /
    • 2013
  • This paper has studied about the development and application of landslide collapse prediction real-time monitoring system based on USN to detect and measure the collapse of landslide. The rainfall measuring sensor, gap water pressure sensor, indicator displacement measuring sensor, index inclination sensor, water content sensor and image analysis sensor are selected and these are applied on the test bed. Each sensor's operation and performance for reliability verification is tested by the instrument which is installed in the field. As the result, u-IT based real-time landslide monitoring system which is developed by this research for landslide collapse detection could minimize life and property damages because it makes advance evacuation with collapse risk pre-estimate through real-time monitoring on roadside cut and bedrock slopes. This system is based on the results of this study demonstrate the effect escarpment plan are spread throughout.

Studies on the Causal Factors of Landslides on Limestone Soils in Pyeongchangkun (산사태(山沙汰) 발생요인(發生要因)에 관한 연구(硏究) -평창군(平昌郡) 석회암지대(石灰岩地帶)를 중심(中心)으로-)

  • Lee, Soo-Wook
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1979
  • The characteristics of landslides occurred in August 5, 1979 in pyeongchangkun were surveyed and indentified as follows. 1. Deep limestone regions. Distinct differences in soil texture between A1 and B horizon could be observed on soil profile, which is attributed to the clay illuviation. The clay illuvial horizon is supposed to be an important cause of large scale mudflows on middle slopes by the lubricant action of ground water flowing between top soil and subsoil. 2. Shallow limestone regions. Very shallow top soils (less than 50cm) laid on tilted bedrock stratification provide a proper condition of mass soil movement if the top soil is saturated and ground water flows between top soil and bedrock when concentrated heavy rainfalls shower. 3. Granite regions. Weathering granitic bedrock produces very coarse textured top soils which are very cohesionless and have many pores. Therefore, the soil has high infiltration ratio and is easy to be saturated by water and to be detached from the bedrock. The landslides abrase very severely both sides of gully with high potential energy when they flow down. The following methods for landslide prevention can be recommended. 1. The original parts of landslides on top of the gully must be treated by intensive planting of deep rooting species and check dams. 2. Clear-cutting and crop planting on steep slope (more than 25 degrees) should be controlled and prohibited. 3. Establishment of landslide prevention forest should be practised on proper site.

  • PDF

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

A Study on Geology and Clay Minerals of the Landslide Area in the Munhyun-dong, Nam-gu, Pusan (부산시 남구 문현동 산사태 지역의 지질 및 점토광물에 대한 연구)

  • 황진연;김선경;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.113-125
    • /
    • 1999
  • In this study the occurrence and mineralogical characteristics of clay minerals from the Munhyun-dong landslide area in Pusan city were examined by XRD, SEM, and chemical analyses. Several types of clay minerals such as halloysite, vermiculite, mica/vermiculite interstratified mineral, vermiculite/smectite interstratified mineral, kaolinite and illite are found abundantly in the area. The occurrence of clay minerals suggest that they have been formed by weathering of andesite which is the bedrock of the area. It is believed that halloysite was formed in the early stage of weathering, and vermiculite, mica/vermiculite interstratified mineral and mica/vermiculite interstratified mineral were formed in the middle stage, and finally, kaolinite was formed. The clay minerals occurring in the central part of the landsliding area and within the slip surface are dominated by expandable minerals such as halloysite, vermiculite and vermiculite/smectite interstratified mineral. These clay minerals expand by absorbing water and effectively decrease the shear resistance of the rock mass, and therefore, they could be an important factor for the landslide. The analyses of geology and mineralogical characteristics of the area suggest that the landslide was caused by combination of various factors including steep slope, heavy rainfall, abundant joints, alteration of the rocks, and occurrence of expandable clay minerals. The result of this study suggests that the investigation for the prevention of possible landslide must include the examination of clay mineralogy as well as the site geology.

  • PDF