• Title/Summary/Keyword: bedding formation

Search Result 68, Processing Time 0.027 seconds

Several Factors Affecting Mass Production of Microlepia strigosa (Thunb.) C. Presl Sporophytes (돌토끼고사리 포자체의 대량생산을 위한 몇 가지 요인)

  • Cho, Ju Sung;Lee, Cheol Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.46-58
    • /
    • 2017
  • This study was conducted to investigate the optimal conditions for spore germination, prothallus propagation, sporophyte formation and seedling growth in Microlepia strigosa (Thunb.) C. Presl. Spore germination and prothallus development were promoted by low concentrations of Knop medium nutrient solution. The optimal medium for prothallus propagation and antheridium formation was 2X MS medium with 3% sucrose. The activated charcoal content of the medium did not affect prothallus proliferation. Among the various combinations of culture soil (bedding soil, peat moss, perlite and decomposed granite), a mixture of bedding soil, peat moss and decomposed granite at a ratio of 1 : 1 : 1 (v : v : v) had a positive effect on sporophyte formation. The most efficient conditions for promoting the growth of whole plants (sporophyte seedlings) were 50 - cell plug trays filled with a mixture of bedding soil and decomposed granite at a 2 : 1 (v : v) ratio.

Sedimentary Petrology and Paleo-oceanography of the Hoedongri Formation, Jeongseon,-Kun, Kangweon-Do, Korea (江原道 旌善郡 檜洞理一帶의 石灰巖層(檜洞理層)에 대한 古海洋學的 (堆積巖石學的) 硏究)

  • 박용안;장진호
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 1985
  • The depositional conditions and paleo-oceanography of the Hoedongri Formation(Silurian) distributed in the Hoedongri, Jeongseon-Kun, Kangweon-Do, Korea were investigated. The major rock types and facies of the Hoedongri Formation consist of mudstone and wackestone facies in which the content of insoluble residues is relatively high (average. 17%). The sedimentary structures observed in the Hoedongri Formation being helpful to the interpretation of depositional conditions are; crypt-algalaminates, bird's eye structures, evaporite pseudomorphs, dolomite mottle structures, detrital quartz pockets and cross bedding. Based on the rock types, facies and sedimentary structures of the Hoedongri Formation, it seems that the Hoedongri Formation might be deposited in a saline supratidal and intertidal zone.

Stratigraphy and Geological Structure of the Northwestern Okcheon Metamorphic Belt Near the Chungju Area (충주지역 북서부 옥천변성대의 층서 및 지질구조)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.9-25
    • /
    • 2009
  • The Northwestern Okcheon Metamorphic Belt in the Chungju area consists of the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanri Dolomite, and the Gyemyeongsan Formation, but the stratigraphy is still controversial. For a stratigraphic study, detailed stratigraphic sections were measured in two locations and mapping was carried out in the study area. The Munjuri Formation and the Daehyangsan Quartzite changed gradually in north and south section, but bedding parallel faults have developed in the boundary between two formations. The Daehyangsan Quartzite and the Hyangsanri Dolomite are conformable. Fault have developed in boundary between the Hyangsanri Dolomite and the Gyemyeongsan Formation. As a result of mapping in the study area, folding was recognized with $41^{\circ}/280^{\circ}$ plunging axis in the north part of the study area. Therefore, the bedding-parallel faults in the boundary might have occurred resulting from a layer parallel slip during the folding as well as the thrust. These results from this study and previous studies indicate that bedding-parallel faults in boundary between the Munjuri Formation and the Daehyangsan Quartzite are caused by a layer parallel slip during the folding. The fault between the Hyangsanri Dolomite and the Gyemyeongsan Formation is considered as a thrust fault, thereby the uppermost Gyemyeongsan Formation is placed under the Munjuri Formation. However the Gyemyeongsan Formation and the Munjuri Formation have similar age and rock composition. Hence, the Gyemyeongsan Formation is considered as an equivalent one with the Munjuri Formation. Therefore, the stratigraphy of Northwestern Okcheon Metamorphic Belt consists of the Gyemyeongsan/ Munjuri formations, the Daehyangsan Quartzite, and the Hyangsanri Dolomite in ascending order.

Conditions of In Vitro Spore Germination and Prothallium Culture for Sporophyte propagation of Polystichum braunii (Spenn.) Fée (좀나도히초미(Polystichum braunii (Spenn.) Fée) 포자체 증식을 위한 기내 포자 발아와 전엽체 배양 조건)

  • Kwon, Hyuk Joon;Han, Ji Hyun;Lee, Cheol Hee;Kim, Soo-Young
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.454-461
    • /
    • 2017
  • This study was conducted to investigate the optimal conditions for spore germination, prothallus propagation, sporophyte formation, and seedling growth in Polystichum braunii (Spenn.) $F{\acute{e}}e$. The rate of spore germination and early prothalium development was high in Knop (41.2%), which had low mineral content. The optimal medium for prothallus propagation and sexual organ formation was 2MS medium (2% sucrose). Among the various mixtures of cultivation soil (bedding soil, peat moss, perlite, and decomposed granite), a mixture of bedding soil and decomposed granite at a ratio of 2:1 (v:v) had a positive effect on sporophyte formation (276.3 ea/$7.5m^2$). The most efficient conditions for promoting the growth of sporophytes were pots filled with only bedding soil.

Study on acoustic emission fracture response and constitutive model of layered sandstone

  • Zhanping Song;Xiaojing Xu;Xiaoxu Tian;Tong Wang;Wanxue Song;Yun Cheng
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.157-170
    • /
    • 2024
  • In the present study, the acoustic emission characteristics of hard sedimentary sandstone with varying bedding dip angles were examined through uniaxial compression tests using a rock mechanics creep apparatus combined with an acoustic emission system. The deformation and failure behavior of the sandstone was analyzed by correlating acoustic emission parameters with stress over time. A damage constitutive model was developed, incorporating cumulative acoustic emission ringing counts as a key parameter, with time acting as the intermediary. The findings indicate that, despite the differences in bedding dip angles, the stress-strain curves of the samples follow a similar pattern throughout the loading process, passing through four distinct phases: compaction, elastic deformation, yielding, and post-peak failure. The fracture patterns of the sandstone are influenced by the dip angle of the bedding. Acoustic emission parameters, including the ringing count, cumulative ringing count, and energy, align with these four stages of the stress-strain curve. During the compaction and elastic deformation phases, acoustic emissions remain in a quite state, with only brief spikes at points of rapid stress change. In the unstable fracture stage, acoustic emissions become highly active, while they return to a quite state in the post-fracture stage. The RA value of the acoustic emission displays a banded pattern as time progresses, with areas of dense clustering. When the stress curve declines, RA values enter an active period, mainly associated with the generation of shear cracks. Conversely, during periods of smooth stress progression, RA values remain in a quiet state, primarily linked to the formation of tensile cracks. The time-based damage constitutive model for layered sandstone effectively captures the entire process of rock fracture development.

Hydraulic fracture initiation pressure of anisotropic shale gas reservoirs

  • Zhu, Haiyan;Guo, Jianchun;Zhao, Xing;Lu, Qianli;Luo, Bo;Feng, Yong-Cun
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.403-430
    • /
    • 2014
  • Shale gas formations exhibit strong mechanical and strength anisotropies. Thus, it is necessary to study the effect of anisotropy on the hydraulic fracture initiation pressure. The calculation model for the in-situ stress of the bedding formation is improved according to the effective stress theory. An analytical model of the stresses around wellbore in shale gas reservoirs, in consideration of stratum dip direction, dip angle, and in-situ stress azimuth, has been built. Besides, this work established a calculation model for the stress around the perforation holes. In combination with the tensile failure criterion, a prediction model for the hydraulic fracture initiation pressure in the shale gas reservoirs is put forward. The error between the prediction result and the measured value for the shale gas reservoir in the southern Sichuan Province is only 3.5%. Specifically, effects of factors including elasticity modulus, Poisson's ratio, in-situ stress ratio, tensile strength, perforation angle (the angle between perforation direction and the maximum principal stress) of anisotropic formations on hydraulic fracture initiation pressure have been investigated. The perforation angle has the largest effect on the fracture initiation pressure, followed by the in-situ stress ratio, ratio of tensile strength to pore pressure, and the anisotropy ratio of elasticity moduli as the last. The effect of the anisotropy ratio of the Poisson's ratio on the fracture initiation pressure can be ignored. This study provides a reference for the hydraulic fracturing design in shale gas wells.

Sedimentological Study of the Nakdong Formation to analyse the Forming and Evolving Tectonics of the Cretaceous Gyeongsang Basin, I: Depositional Setting, Source, and Paleocurrent Analyses of the Nakdong Formation in the Southwestern Gyeongsang Basin (백악기 경상분지의 생성 및 진화에 관여한 지구조운동의 분석과 최하부 낙동층에 대한 퇴적학적 연구 I: 경상분지 서남단 낙동층의 퇴적환경과 기원암, 고수류 분석)

  • Cheong, Dae-Kyo;Kim, Yong-In
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.639-660
    • /
    • 1996
  • The lowest formation of the Cretaceous Gyeongsang Supergroup, the Nakdong Formation, unconformably overlies the gneiss complex basement in Hadong, Gyeongsangnam-do and Gwangyang, Chullanam-do. The Nakdong Formation of the study area is 500-600 m thick and occurs as a belt shape. Based upon lithology, sedimentary structure, and bedding geometry the formation consists of three conglomerate facies (Gd, Gn, Gic), five sandstone facies (Sh-n, Sh-i, Sp, Sr, Sm), and four mudstone facies (Mf, Mfn, Mc, Mv). Sandstone facies are the most prominent in the study area. The twelve facies can be grouped into five facies associations. The depositional settings are elucidated from analyses of 12 facies and five facies associations of the formation. The lower part of the Nakdong Formation was deposited in alluvial plain, and the middle and upper parts were in a riverine system. The lithologies of the Nakdong Formation of the Gyeongsang Basin have been considered to consist of generally conglomerates and pebbly sandstones that were accumulated in alluvial fans. But the common lithology of the study area is sandstone which was formed in lower part of alluvial fan or fluvial setting. It is supposed that the coarser sedimentary sequence distributed west to the study area should be eroded out after deposition and early uplift, and the finer sandstone sequence in the east remains behind. The mineral composition of sandstones and the clast composition of conglomerates indicate that the Nakdong Formation was derived mainly from the metamorphic source rocks. Some reworked intraclasts were also supplied from the intrabasinal sedimentary layers. Paleocurrent data collected from cross-beddings, ripple marks, asymmetric sand dune suggest that most sediments were transported from north to south during the Nakdong Formation time.

  • PDF

Effects of Medium Components and Composition on Mass Propagation of Arachniodes aristata (G. Forst.) Tindale (가는쇠고사리의 대량번식에 미치는 배지구성물질과 배양토의 영향)

  • Cho, Ju Sung;Han, Ji Hyun;Lee, Cheol Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.131-141
    • /
    • 2017
  • This study was conducted to investigate in vitro mass propagation methods suitable for each growth stage of A. aristata (G. Forst.) Tindale, from spore germination to sporophyte formation. Among spores germinated in $1/8-1{\times}MS$ medium and Knop medium, Knop medium yielded the highest germination percentage (87.1%). We cultured prothalli obtained from germinating spores for 8 weeks on media with different concentrations of sucrose and active carbon, as well as different concentrations and ratios of nitrogen, to select a suitable growth medium. A. aristata (G. Forst.) Tindale prothalli grew most actively in MS medium with 3% sucrose and 20 : 40 mM of $NH_4Cl$ and $KNO_3$ (total concentration of 60 mM). We investigated sporophyte formation according to soil type, finding that bedding soil mixed with perlite at a 2 : 1(v / v) ratio yielded the highest number of sporophytes per pot ($73.8/7.5{\times}7.5cm\;pot$). By contrast, when peat moss was used alone or mixed with other substrates, prothallus development and sporophyte formation were suppressed. Therefore, the most effective propagation method for A. aristata (G. Forst.) Tindale is to grow prothalli in MS medium and to induce sporophyte formation in a mixture of bedding soil and perlite (v / v = 2 : 1).

Potential of gas generation and natural gas hydrate formation in the near seafloor sediment of the Ulleung Basin (울릉분지 천부 퇴적층에서의 가스 생성과 천연가스 하이드레이트 형성 잠재력)

  • Ryu, Byong-Jae;Lee, Young-Joo;Kim, Ji-Hoon;Kim, Il-Soo;Park, Myong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.419-423
    • /
    • 2006
  • Basic studies on natural gas hydrates in the East Sea were been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) from 2000 to 2004 involving 2D multichannel seismic lines and piston coring. 27 piston cores recovered from the deed-water Ulleung Basin of the East Sea were analyzed in this study. In piston cores cracks generally developed parallel to bedding suggest significant gas content. The core analyses showed high total organic carbon (TOC) content, sedimentation rate and heat flow of sediments. The cores recovered from the southern study area show also high residual hydrocarbon gas concentrations for the formation of natural gas hydrates. This study indicates that there is the potential for the generation of biogenic gas and the formation of natural gas hydrates in the near seafloor sediments of the study area.

  • PDF

Palaeomagnetism of the Cretaceous Yuchon Group in Kosong Area, Southern Kyongsang Basin (경상분지 남단 고성지역의 백악기 유천층군에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.663-674
    • /
    • 2000
  • A total of 165 independently oriented core samples were collected from 19 Cretaceous Yuchon Group sites in Kosong area, the southernmost part of the Miryang subbasin of the Kyongsang Basin in southern Korea. Stepwise AF and thermal cleaning revealed antipodal ChRM from 95 samples from 14 sites. Mean ChRM direction is d=26.0$^{\circ}$, i=49.4$^{\circ}$ (${\alpha}_{95}$=8.2$^{\circ}$, k=24.5, n= 14) before bedding correction and d=28.1$^{\circ}$, i=54.2$^{\circ}$ (${\alpha}_{95}$=4.8$^{\circ}$, k=70.6, n= 14) after bedding correction. A 2.88-fold increase of the precession parameter k by bedding correction indicates pre-folding age of the ChRM with 99% confidence level. Palaeomagnetic pole position calculated from the mean ChRM is 67.0$^{\circ}$N, 210.6$^{\circ}$E (dp=4.7$^{\circ}$, dm=6.7$^{\circ}$), which is significantly different neither from the poles of other part of the Kyongsang Basin nor those of Eurasia including SCB and NCB. This suggests stable relative position of the study area with regard to other parts of the Kyongsang Basin as well as to Eurasia continent since Cretaceous. Three ploarity reversals in the Kosong Formation in addition to the coexistence of normal and reversed polarities in the overlying Andesites and Welded Tuff suggest, in reference to the worldwide geomagnetic polarity time scale, an Albian to Maastrichtian (polarity chron 32r-31r) age of the Yuchon Group of the study area. An alleged hypothesis of stratigraphical correspondence between the Kosong Formation in the study area and the Tadaepo Formation in Pusan area is, however, not tenable: Not only because the latter shows a short reverse polarity only in its lowest part of the sequence but also because the Andesites overlying it is wholly normally magnetized, in contrast to the frequent reverals in the case of both the Kosong Formation and Andesites above it.

  • PDF