• Title/Summary/Keyword: bearing testing

Search Result 257, Processing Time 0.025 seconds

Application of six neural network-based solutions on bearing capacity of shallow footing on double-layer soils

  • Wenjun DAI;Marieh Fatahizadeh;Hamed Gholizadeh Touchaei;Hossein Moayedi;Loke Kok Foong
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.231-244
    • /
    • 2023
  • Many of the recent investigations in the field of geotechnical engineering focused on the bearing capacity theories of multilayered soil. A number of factors affect the bearing capacity of the soil, such as soil properties, applied overburden stress, soil layer thickness beneath the footing, and type of design analysis. An extensive number of finite element model (FEM) simulation was performed on a prototype slope with various abovementioned terms. Furthermore, several non-linear artificial intelligence (AI) models are developed, and the best possible neural network system is presented. The data set is from 3443 measured full-scale finite element modeling (FEM) results of a circular shallow footing analysis placed on layered cohesionless soil. The result is used for both training (75% selected randomly) and testing (25% selected randomly) the models. The results from the predicted models are evaluated and compared using different statistical indices (R2 and RMSE) and the most accurate model BBO (R2=0.9481, RMSE=4.71878 for training and R2=0.94355, RMSE=5.1338 for testing) and TLBO (R2=0.948, RMSE=4.70822 for training and R2=0.94341, RMSE=5.13991 for testing) are presented as a simple, applicable formula.

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

A study on the optimum condition of FRP coarse-sand coating by using a new testing method for shear bearing capacity of FRP-concrete interface (새로운 FRP-콘크리트 전단부착성능 평가법을 활용한 최적 FRP 규사코팅 조건에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.277-289
    • /
    • 2011
  • This study proposes a new testing method for shear bearing capacity of FRP-concrete interface, which could well consider a loading condition corresponding to a tunnel lining undergoing axial compression and could be easily carried out with a simply specified specimen. A parametric study is carried out for capturing an optimized condition of coarse-sand coating of FRP, which governs shear bearing capacity of FRP-concrete interface, by using the proposed testing manner in this study. From the parametric study, it is shown that the proposed testing method is reasonably feasible in comparison with the existing testing methods. An optimum condition of coated sand size and sand density is given for the shearing capacity of FRP-concrete interface.

The Effect of Oil-Starvation on the Lubrication Characteristics of High-Speed Bearing: Part I-Ball Bearing (가스터어빈용 고속 베어링의 Oil-Starvation 윤활특성: Part I-Ball Bearing)

  • Kim, Ki-Tae
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.70-75
    • /
    • 1997
  • The lubrication characteristics of high-speed ball bearings at oil-starvation have been investigated empirically using the bearings employed in small industrial gas turbine engines. For the close structural simulation, experiments carried our with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be applied to the design and the development of gas turbine engines. Testing was done by simulating the oil-starvation conditions in engines, such as stopping the oil-supply to the bearing during normal operating, starting without oil-supply at atmospheric temperature, and accelerating with oil-supply at atmospheric temperature. From this study, the relative comparison of the frictional resistance and the resistance due to the bearing cavity oil was demonstrated visually, and the resistance due to the bearing cavity oil was dominant in the resistance of bearing at high speed.

A Study on Real-Time Fault Monitoring Detection Method of Bearing Using the Infrared Thermography (적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구)

  • Kim, Ho-Jong;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.330-335
    • /
    • 2013
  • Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.

Chord bearing capacity in long-span tubular trusses

  • Kozy, B.;Boyle, R.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.103-122
    • /
    • 2006
  • The capacity of tubular truss chords subjected to concentrated reaction forces in the vicinity of the open end (i.e., the bearing region) is not directly treated by existing design specifications; although capacity equations are promulgated for related tubular joint configurations. The lack of direct treatment of bearing capacity in existing design specifications seems to represent an unsatisfactory situation given the fact that connections very often control the design of long-span tubular structures comprised of members with slender cross-sections. The case of the simple-span overhead highway sign truss is studied, in which the bearing reaction is applied near the chord end. The present research is aimed at assessing the validity of adapting existing specifications' capacity equations from related cases so as to be applicable in determining design capacity in tubular truss bearing regions. These modified capacity equations are subsequently used in comparisons with full-scale experimental results obtained from testing carried out at the University of Pittsburgh.

On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography (전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구)

  • Hong, Dong-Pyo;Kim, Ho-Jong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology. with valuable suggestions for the future bearing fault detection.

Infrared Thermography Quantitative Diagnosis in Vibration Mode of Rotational Mechanics

  • Seo, Jin-Ju;Choi, Nam-Ryoung;Kim, Won-Tae;Hong, Dong-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.291-295
    • /
    • 2012
  • In the industrial field, real-time monitoring system like a fault early detection is very important. For this, the infrared thermography technique as a new diagnosis method is proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, thermal image and temperature data were measured by a Cedip Silver 450 M infrared camera. Based on the results, the temperature characteristics under the conditions of normal, loss lubrication, damage, dynamic loading, and damage under loading were analyzed. It was confirmed that the infrared technique is very useful for the detection of the bearing damage.

Testing of Load Capacity of a Foil Thrust Bearing

  • Kim, Choong Hyun;Park, Jisu
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.300-306
    • /
    • 2018
  • In this study, the performance of foil thrust bearings was investigated by performing bearing take-off and load capacity tests, using an in-house designed and manufactured vertical bearing test rig. The mean take-off rotational speed and maximum load capacity of the bearing specimen were ~18,000 rpm and ~80 kPa, respectively. The vertical bearing test rig was observed to yield higher coefficients of friction and frictional torques than a horizontal bearing test rig under identical test conditions. This was a result of its structural characteristics, in that the bearing specimen is placed atop the thrust runner, which keeps it from being separated from the runner after the bearing take-off. In addition, bearing take-off was observed at a higher runner rotational speed as this structure keeps air from flowing between the top foil and runner surfaces, which requires a higher runner speed. The parallel alignment between the bearing specimen and runner surfaces can be maintained within a certain range more easily in a vertical test rig than in a horizontal test rig. Because of these advantages, Korean Industrial Standard, KS B 2060, recommends a vertical bearing test rig as the standard test device for foil thrust bearings.