• Title/Summary/Keyword: bearing stress analysis

Search Result 373, Processing Time 0.033 seconds

A Computational Investigation on Airflow Structures Inside a Ball Bearing at High-Speed Rotation (고속 회전하는 볼베어링 내 공기 유동구조 수치해석 연구)

  • Kim, Dong-Joo;Oh, Il-Suk;Hong, Seong-Wook;Kim, Kyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.745-750
    • /
    • 2011
  • In a hope to better understand the flow and convective heat transfer characteristics inside a ball bearing, air flow between the rolling elements and raceways at high speed bearing rotation is numerically investigated using a simplified inner geometry of bearing and a CFD technique. Flow simulation results reveal the pressure distribution of airflow and the shear stress distribution on the ball surface, of which nonuniformity becomes significant with the increasing rotational speed. Also, the local point of maximum shear stress coincides with the stagnation flow area on the surface of rolling elements. A complex pattern of three-dimensional vortex structures is found in the air flow due to the relative motion of bearing elements and three different types of vortex pairs exist around the rotating and orbiting rolling elements.

Stress delivery mechanism of Top Bases (팽이기초의 하중전달 메커니즘)

  • Chung, Jin-Hyuck;Do, Jun-Ki;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.430-440
    • /
    • 2009
  • Top-Base Foundation(TBF) was developed in Japan as a factory made concrete product. It is actively used in 6,000 sites by the end of 1980s in Japan and applied for a domestic patent in 1985. It is a shallow foundation whose effectiveness is proven by many relevant researchers and engineers. TBF was introduced to Korea in 1991 and has been applied mainly to architectural structures to date. Currently, the effectiveness in bearing capacity and settlement of TBF is being underestimated for civil engineering structures. Characteristics of Top-Base Foundation studied in Japan and Korea is known as follows: (1) as concrete part and crushed stone behave together, they perform the function of rigid mat; (2) the conical part and pile part of TBF disperses load by interaction with the crushed stone; (3) by preventing lateral strain and differential settlement on lower ground, it improves bearing capacity and constrains settlement at the same time. In Korea, it is used mostly in clayey soft grounds. The formula of bearing capacity and settlement of TBF suggested in Japan give the values of the underestimated. bearing capacity while its settlement is overestimated in comparison with the values measured from the field loading test. Therefore, in this study, the stress delivery mechanism of Top-Base Foundation developed in Japan and Floating Top Base developed in Korea is investigated through numerical analysis and laboratory model test.

  • PDF

Lubrication effect of slider bearing with wavy surface (파형이 있는 슬라이더 베어링의 윤활효과)

  • Wang, Il-Gun;Chin, Do-Hun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.35-42
    • /
    • 2014
  • The influence of sine wave striated surface roughness on load carrying capacity of a bearing is studied for thin film effect of slider bearing. A Reynolds equation appropriate for slider bearing is used in this paper for analysis and it is discussed using finite difference method of central difference scheme. For a slider bearing with sine wave simple roughness form, several parameters such as pressure, load capacity and shear stress of the bearing can be obtained and also this results can be stored in sequential data file for latter analysis. After all, their distribution can be displayed and analyzed easily by using the matlab GUI technique. The parameters such as amplitude, number of waviness and slope of the surface are used for discussing the load carrying capacity of the rectangular bearing. The results reported in this paper should be applied to the other slider bearing such as rectangular or round embossed surface of slider bearing.

Reliability Analysis of Slab Transfer Equipment in Hot Rolling Furnace (열간압연 가열로 슬라브 이송장치 신뢰도 해석)

  • Bae, Young-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.6-14
    • /
    • 2006
  • The development of automatic production systems have required intelligent diagnostic and monitoring functions to overcome system failure and reduce production loss by the failure. In order to perform accurate operations of the intelligent system, implication about total system failure and fault analysis due to each mechanical component failures are required. Also solutions for repair and maintenance can be suggested from these analysis results. As an essential component of a mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical deficiency, mechanical condition(vibration, overloading, misalignment) and environmental effects. This study described slab transfer equipment fault train due to stress variation and metallurgical deficiency from lubricant failure by using FTA.

Determination of the bearing capacity of model ring footings: Experimental and numerical investigations

  • Turedi, Yakup;Emirler, Buse;Ornek, Murat;Yildiz, Abdulazim
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • In this paper, it was presented an investigation on the load-settlement and vertical stress analysis of the ring footings on the loose sand bed by conducting both laboratory model tests and numerical analyses. A total of twenty tests were conducted in geotechnical laboratory and numerical analyses of the test models were carried out using the finite element package Plaxis 3D to find the ultimate capacities of the ring footings. Moreover, the results obtained from both foregoing methods were compared with theoretical results given in the literature. The effects of the ring width on bearing capacity of the footings and vertical stresses along the depth were investigated. Consequently, the experimental observations are in a very good agreement with the numerical and theoretical results. The variation in the bearing capacity is little when $r_i/R_o$ <0.3. That means, when the ring width ratio, $r_i/R_o$, is equal to 0.3, this option can provide more economic solutions in the applications of the ring footings. Since, this corresponds to less concrete consumption in the ring footing design.

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF

Analysis of the Rolling Contact Fatigue of the Shot Peened Ball Bearing by X-ray Diffraction (X선회절에 의한 SHOT PEENING처리 구름베어링의 구름접촉 피로해석)

  • 이한영
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.39-45
    • /
    • 1997
  • The shot peening treatment were conducted for improving the strength of rolling contact fatigue of machine element like a gear. This paper was undertaken to analyze the influence of shot peening treatment for inner race of ball bearing on the rolling contact fatigue. Shot peening treatment were applied to the full hardened and the carbonitrided bearing. And the rolling contact fatigue life test and X-ray diffraction test were carried out. The results of this study showed that the fatigue life of ball bearing in the clean and the contaminated oil could be improved by shot peening treatment. This effect was found to be more pronounced to the full hardened bearing. These facts might be due to the generation of compressive residual stress and the strain hardening of surface layer by shot peening treatment. The failure of the shot peened bearing were presumed to initiate at surface.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

Composite action of hollow concrete-filled circular steel tubular stub columns

  • Fu, Qiang;Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2018
  • To better understand the influence of hollow ratio on the hollow concrete-filled circular steel tubular (H-CFT) stub columns under axial compression and to propose the design formula of ultimate bearing capacity for H-CFT stub columns, 3D finite element analysis and laboratory experiments were completed to obtain the load-deformation curves and the failure modes of H-CFT stub columns. The changes of the confinement effect between core concrete and steel tube with different hollow ratios were discussed based on the finite element results. The result shows that the axial stress of concrete and hoop stress of steel tube in H-CFT stub columns are decreased with the increase of hollow ratio. AfteGr the yield of steel, the reduction rate of longitudinal stress and the increase rate of circumferential stress for the steel tube slowed down. The confinement effect from steel tube on concrete also weakened slowly with the increase of hollow ratio. Based on the limit equilibrium method, a simplified formula of ultimate bearing capacity for the axially loaded H-CFT stub columns was proposed. The predicted results showed satisfactory agreement with the experimental and numerical results.