• Title/Summary/Keyword: bearing parameters

Search Result 757, Processing Time 0.027 seconds

Shape Optimization of an Automotive Wheel Bearing Seal Using the Response Surface Method (반응표면법을 사용한 자동차용 휠 베어링 시일의 형상 최적화)

  • Moon, Hyung-Ll;Lm, Jong-Soon;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the shape optimization process for the automotive wheel bearing seal lip using the finite element method and the response surface method. First, to predict performance of the bearing seal lip, we used the non-linear finite element analysis. And then, we compared the analysis results with the test results to verify the finite element model. The objective function in optimizing process was obtained from results of the mud slurry test, which is one of many tests for evaluating performance of wheel bearing. After the mud slurry test for the four models which have the similar cross-sectional shape, we measured the wear area of the seal lip and the moisture content in grease. The objective function has been chosen by comparing the results of mud slurry test and characteristics of seal lip, such as contact force, contact area, contact pressure, and interference. Finally, within limited design parameters, we suggested the optimized shape of seal lip, which is expected to improve the wear and the sealing effect of it.

Experiment on the Effective Helix Area to Determine the Bearing Capacity of Helical Steel Piles (나선형 강관파일의 날개 유효면적 산정을 위한 지지력 실험)

  • Lee, Min-Joo;Kim, Kyoung-Min;Rhim, Hong-Chul;Seo, Gum-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.25-27
    • /
    • 2010
  • Helical steel piles are being widely used in foundation for the buildings in urban areas because of their high compressive and tensile capacities. Helical steel piles have many advantages; ease installation, a vibration-free and low level of noise process, and so on. However, the most researches are about the capacity of helical steel piles under uplift condition. Therefore, this paper focuses on the capacity under compressive loading according to the soil condition. The bearing capacity of helical steel piles varies with the diameter of the helix and shaft and the bearing area of helical steel piles is not always identical with the sum of helix and shaft area due to the difference of each bearing mechanism. Therefore, the experiment with the parameters of the ratio of helix and shaft diameter and soil condition will be carried out to survey the effective helix area under a given soil condition for the bearing capacity of helical steel piles.

  • PDF

The Analysis of the Bearing Capacity of Layered Clay by Numerical Methods (수치해석적 방법에 의한 층상 점토지반의 극한지지력 해석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.121-129
    • /
    • 2003
  • Numerical studies on bearing capacity problems of layered clay are performed for smooth and rough strip footings. The finite element method and finite difference method (FLAC) are used for computations of the bearing capacity, entire load-displacement curve and the failure mechanism. The presented results show that it is possible to analyze the bearing capacity of layered clay and to give a progressive failure mechanism clearly. To obtain high quality solutions, it is necessary to review the results on control parameters(e.g., yield function, number of calculation) and compare the results by two numerical methods.

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

Antitumor and antioxidant status of Galega purpurea root in Ehrlich ascites carcinoma bearing Swiss albino mice

  • Gupta, M;Mazumder, UK;Gomathi, P
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.426-435
    • /
    • 2007
  • The present study was designed to determine the antitumor and antioxidant properties of methanol extract from the root of Galega purpurea (Papilionaceae) (MEGP) against Ehrlich Ascites Carcinoma (EAC) bearing Swiss albino mice. Acute and short-term toxicity studies were performed initially in order to ascertain the safety of MEGP. The effect of MEGP on the growth of transplantable murine tumor, life span of EAC bearing hosts and simultaneous alterations in the hematological profile and liver biochemical parameters (lipid peroxidation, antioxidant enzymes) were estimated. The MEGP showed decrease in tumor volume, packed cell volume and viable cell count and increases the nonviable cell count and mean survival time thereby increasing life span of EAC tumor bearing mice. Hematological profile reverted to more or less normal levels in extract treated mice. Treatment with MEGP decreased the levels of lipid peroxidation and increased the levels of glutathione, superoxide dismutase and catalase. The results suggested that the methanol extract of Galega purpurea root exhibited antitumor effect by modulating lipid peroxidation and augmenting antioxidant defense system in EAC bearing mice.

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Park, Dong-Jin;Kim, Chang-Ho;Lee, Sung-Chul;Lee, Yong-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1135-1141
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performance, stiffness, damping coefficient and load capacity, depends on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

  • PDF

Lifetime prediction of bearings in on-board starter generator

  • Zieja, Mariusz;Tomaszewska, Justyna;Woch, Marta;Michalski, Mariusz
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.289-302
    • /
    • 2021
  • Ensuring flight safety for passengers as well as crew is the most important aspect of modern aviation, and in order to achieve this, it is necessary to be able to forecast the durability of individual components. The present contribution illustrates the results of a computational analysis to determine the possibility of analysing the prediction of bearing durability in on-board rotating equipment from the point of view of thermal fatigue.In this study, a method developed at the Air Force Institute of Technology was used for analysis, which allowed to determine the bearing durability from the flight altitude profile. Two aircraft have been chosen for analysis - a military M-28 and a civilian Embraer. As a result of the analysis were obtained: the bearing durability in on-board rotating devices, average operation time between failures, as well as failure rate. In conclusion, the practical applicability of this approach is demonstrated by the fact that even with a limited number of flight parameters, it is possible to estimate bearing durability and increase flight safety by regular inspections.

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.

Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage

  • Li, Yujie;Luo, Rong;Zhang, Qihua;Xiao, Guoqiang;Zhou, Liming;Zhang, Yuting
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.139-160
    • /
    • 2017
  • The bearing mechanism of tunnel-type anchorage (TTA) for suspension bridges is studied. Model tests are conducted using different shapes of plug bodies, which are circular column shape and circular truncated cone shape. The results show that the plug body of the latter shape possesses much larger bearing capacity, namely 4.48 times at elastic deformation stage and 4.54 times at failure stage compared to the former shape. Numerical simulation is then conducted to understand the mechanical and structural responses of plug body and surrounding rock mass. The mechanical parameters of the surrounding rock mass are firstly back-analyzed based on the monitoring data. The calculation laws of deformation and equivalent plastic strain show that the numerical simulation results are rational and provide subsequent mechanism analysis with an established basis. Afterwards, the bearing mechanism of TTA is studied. It is concluded that the plug body of circular truncated cone shape is able to take advantage of the material strength of the surrounding rock mass, which greatly enhances its bearing capacity. The ultimate bearing capacity of TTA, therefore, is concluded to be determined by the material strength of surrounding rock mass. Finally, recommendations for TTA design are proposed and discussed.