• Title/Summary/Keyword: bearing mechanism

Search Result 465, Processing Time 0.031 seconds

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

A Fundamental Study on the Development of a Variable Preload Device Using Toggle Joint Mechanism (토글 조인트장치를 이용한 가변예압장치 개발을 위한 기초 연구)

  • Choi, Chi Hyuk;Cha, Na Hyeon;Lee, Choon Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • To increase the machine accuracy by improving the stiffness of spindle bearings, preload was applied to the spindle bearings. The methods of fixed position preload, convertible preload, constant pressure preload, and variable preload are used to apply the preload to the spindle bearing. The previous studies performed by the author of this study were variable preload methods using rubber pressure and centrifugal force based on mechanical systems. This study proposed a toggle joint mechanism that could be applied to variable preload method using centrifugal force and rubber pressure to increase the preload. Also, a finite element analysis was conducted to predict the deformation of the rubber and change of the preload. And the analysis results showed that the preload by the device using rubber pressure only was increased by the toggle joint mechanism using rubber pressure.

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism(II) (4절 링크 기구의 동적 변형 해석 (II))

  • 조선휘;박종근;주동인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.910-923
    • /
    • 1992
  • Experimental verification of numerical results is conducted by measuring the dynamic strains of mid-points of the coupler and the lever for the 4-bar linkage mechanism with rigid bearing and flexible bearing, respectively. For the axial strain of lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones, however, the numerical results excluding geometric stiffness almost agree with the experimental ones for the axial strain of coupler mid-point. It is supposed that these phenomena should be caused by the fact that the motion of the coupler is more complicated than of the lever. The signals of dynamic strains of coupler and lever mid-points, measured by strain gages, are transformed into frequency domain by fast fourier transformer. From this experiment, the lst resonance frequencies of the coupler and the lever are obtained. It is made clear that the former almost agrees with the fundamental and the latter the 2nd mode natural frequency of the mechanism system calculated by numerical analysis.

Bearing Capacity of Strip Footing Adjacent on Cohesionless Slopes (비점착성 사면에 인접한 대상기초의 지지력)

  • Yu, Nam-Jae;Kim, Yeong-Gil;Jeon, Yeon-Jong
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.37-54
    • /
    • 1997
  • This paper is to investigate the bearing capacity and the failure mechanism of slope subjected to strip surcharges adjassent to embankment slope of sandy soil. Parametric model tests under plain strain condition were performed by changing width of footing, relative density of slope materials, and position of footing from the crest of slopes. For model tests, Jumunjin standard sand was used as the slope material and its relative density was 45% and 70%, respectively. The angle of slope was formed with 1 : 1.5 and 1 2. Rigid model footings, made of aluminuu were used with their widths of 4, 7, 10 and 12cm. For the position of model footing, position ratios, distance of model footing from the crest of slope divided by footing width, were 0, 0.5, 1, 2, 3, 4, 5. Failure mechanism was observed by using ink colored sands and markers inserted in model slopes. Ultimate bearing capacity obtained from tests was analyzed and compared with limit equilibrium method, limit analysis method and empirical equation. Characteristics of load-settlement curves and failure mechanism were also analyzed and compared with the existing theories. Thus, their effects on ultimate bearing capacity of model footing adjacent to slope were assessed.

  • PDF

Lubrication Effect of Journal Bearing according to its Eccentricity and Attitude Angle (베어링 편심도와 자세각에 따른 저어널 베어링의 윤활효과)

  • Kim, Jong-Do;Wang, Yi-Jun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.88-95
    • /
    • 2015
  • The thickness of adsorbed molecular layers is the most critical factor in studying thin-film lubrication, and it is the most essential parameter that distinguishes thin-film from thick-film lubrication analysis. The thin film between the shaft and bearing surface within a very narrow gap was considered. The general Reynolds equation has been derived for calculating thin-film lubrication parameters affecting the performance of the circular journal bearing. Investigation of the load-carrying capacity and pressure distribution for the journal bearing considering the adsorbed layer thickness has been carried out. A Reynolds equation appropriate for the journal bearing is used in this paper for the analysis, and it is discussed using the finite difference method of the central difference scheme. The parameters, such as eccentricity and attitude angle, are used for discussing the load-carrying capacity of the journal bearing. The results reported in this paper should be applied to analysis of the journal bearing with different lubrication factors. The steady-state analysis of the journal bearing is conducted using the Reynolds model under thin-film lubrication conditions. For a journal bearing, several parameters, such as a pressure, load capacity, and pressure components of the bearing can be obtained, and these results can be stored in a sequential data file for later analysis. Finally, their distribution can be displayed and analyzed easily by using the MATLAB GUI technique. The load-carrying capability of the journal bearing is observed for the specified operating conditions. This work could be helpful for the understanding and research of the mechanism of thin-film lubrication.

Load Carrying Capacity and Failure Mechanism of Geogrid Reinforced Stone Columns : Reduced-Scale Model Tests (지오그리드 보강 Stone Column의 파괴메카니즘 및 지지력 특성 - 축소모형실험을 통한 고찰)

  • Lee, Dae-Young;Song, Ah-Ran;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.121-129
    • /
    • 2006
  • Stone column is one of the ground improvement systems which is being used for accelerating consolidation and increasing bearing capacity for settlement sensitive structures like load embankments, bridge abutments, oil storage tanks etc. The effects of this method are enhancement of ground bearing capacity, reduction of settlement, prevention of liquefaction and prevention of lateral ground movement. Recently, geosynthetic reinforced (encased) stone column approach has been developed to improve its load carrying capacity through increasing confinement effect. Although such a concept has successfully been applied in practice, fundamentals of the method have not been fully explored. This paper presents the results of an investigation on the bearing capacity and failure mechanism of geogrid-encased stone column by model tests. The results of the analyses indicated improved bearing capacity of the geogrid reinforced stone column method over the conventional strone column method with no encasing.

A Small Disk-type Hybrid Self-healing Motor (소형 원판형 하이브리드 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.338-348
    • /
    • 2001
  • A hybrid self-hearing motor, which Is a functional combination of general permanent magnet (PM) motor and hybrid active magnetic bearing(AMB), was proposed a few years ago. In this paper the hybrid self-bearing motor is modified to a disk type, in which one of two magnetic hearings was substituted for a thin yoke to make the system more compact. An outer rotors in this self-hearing motor is actively controlled only in two radial directions while the ocher motions are passively salable owing to the disk-type structure. Main advantages of the proposed self-hearing motor are simple control mechanism, low power consumption and smart structure. Mathematical model for the magnetic force Is built wish consideration of the radial displacement of the rotor. The model helps us not only to design a levitation controller but also to expect the system performance. Some experimental results show good capability and feasibility of the Proposed self-bearing motor.

  • PDF

Optimum Design of Hermetic Compressor Joumal Bearing with Alternative Refrigerant Application (대체냉매 적용에 따른 밀폐형 압축기 저널베어링의 최적설계)

  • 이규한;김정우;이장희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.218-227
    • /
    • 1998
  • Present study is undertaken to optimize the lubrication reliability and frictional loss of the dynamically-loaded journal bearing in hermetic reciprocating compressor with alternative refrigerant R600a application. Thermodynamic and dynamic analysis has been conducted to investigate cylinder pressure variations by substitution alternative refrigerant R600a for R12. The modeling of the dynamics of the compressor mechanism has been performed with lumped mass method. A mathematical model is developed for analyzing the dynamics of the journal bearing system with the mobility method. It takes into account the effects of the refrigerant species, aspect ratio, clearance ratio and surface roughness. A corresponding computer program is described which enables to obtain the minimum film thickness and frictional loss. Design optimization is graphically performed by parametric studies of the aspect ratio and clearance ratio.

  • PDF

Numerical Computation of Bearing Capacity Factor $N_{\gamma}$ (지지력 계수 $N_{\gamma}$의 수치적 산정법)

  • Kim, Won-Cheul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.565-573
    • /
    • 2004
  • This study is to present explicit analytical expressions for calculating bearing capacity factor $N_{\gamma}$, to provide results of the numerical computation instead of the graphical method. In this study, $N_{\gamma}$ is proposed in the critical failure surface on assumption that the center of log spiral in the radial shear zone can be located at the any points of around footing. The critical failure surface is one which yields minimum passive pressure $P_{\gamma}$ on the radial shear zone from the family of log spirals accoding to change of the center of log spiral. This study adoptes Terzaghi's bearing capacity principle(e.g., Prandtl's mechanism, limit equilibrium equation, superposition principle) but the soil wedge in an elastic zone makes angle $45^{\circ}+{\phi}/2$ with the horizontal and the location of the log spiral's center.

  • PDF

Development of Mirror~like Polishing System for Hemispherical High-¬speed Precision Bearing for Digital VTR Drum (디지탈 VTR 드럼용 반구 고속 정밀베어링의 경면연마 시스템)

  • 김정두;최민석;우기명;김영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.24-28
    • /
    • 1996
  • Mirror-like polishing system of hemisphericall high-speed precision bearing for digital VTR drum was developed. Mechamism of the polishing process was analyzed in the view point of polishing contact range and contact length between the tool and the workpiece surface. It was suggested that the two stage polishing process adoptiong the diamond grinding wheel and polishing tool instead of multistage lapping processes, which enables the mass production of the bearing by reduction of polishing time.

  • PDF