• Title/Summary/Keyword: bearing fault diagnosis

Search Result 83, Processing Time 0.03 seconds

Development of Software For Machinery Diagnostics by Adaptive Noise Cancelling Method (1St: Cepstrum Analysis)

  • Lee, Jung-Chul;Oh, Jae-Eung;Yum, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.836-841
    • /
    • 1987
  • Many kinds of conditioning monitoring technique have been studied, so this study has investigated the possibility of checking the trend in the fault diagnosis of ball bearing, one of the elements of rotating machine, by applying the cepstral analysis method using the adaptive noise cancelling (ANC) method. And computer simulation is conducted in oder to identify obviously the physical meaning of ANC. The optimal adaptation gain in adaptive filter is estimated, the performance of ANC according to the change of the signal to noise ratio and convergence of LMS algorithm is considered by simulation. It is verified that cepstral analysis using ANC method is more effective than the conventional cepstral analysis method in bearing fault diagnosis.

  • PDF

Bearing Fault Diagnosis using Adaptive Self-Tuning Support Vector Machine (적응적 자가 튜닝 서포트벡터머신을 이용한 베어링 고장 진단)

  • Kim, Jaeyoung;Kim, Jong-Myon;Choi, Byeong-Keun;Son, Seok-Man
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.19-20
    • /
    • 2016
  • 본 논문에서는 서포트 벡터 머신 (SVM)의 분류 성능에 영향을 주는 인수인 C와 ${\sigma}$ 값을 적응적으로 최적화할 수 있는 적응적 자가튜닝 SVM을 이용한 베어링의 상태 진단 방법을 제안한다. SVM의 각 인수의 변화에 따른 베어링 상태 진단의 성능 변화 패턴을 분석하여 적합한 인수를 적응적으로 찾을 수 있는 방법을 제안하고, 제안한 방법의 우수성을 검증하기 위해 실제 베어링 신호를 이용하여 기존방법인 격자탐색과의 성능을 비교하였다.

  • PDF

Induction Motor Bearing Damage Detection Using Stator Current Monitoring (고정자전류 모니터링에 의한 유도전동기 베어링고장 검출에 관한 연구)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.36-45
    • /
    • 2005
  • This paper addresses the application of motor current spectral analysis for the detection of rolling-element bearing damage in induction machines. We set the experimental test bed. They is composed of the normal condition bearing system, the abnormal rolling-element bearing system of 2 type induction motors with shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. We have developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT(Fast Fourier Transform), Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. Especially, the analyzed results by inner product clearly illustrate that the stator signature analysis can be used to identify the presence of a bearing fault.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Faults Diagnosis of Induction Motors by Neural Network (인공신경망을 이용한 유도전동기 고장진단)

  • 김부열;우혁재;송명현;박중조;김경민;정회범
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.294-299
    • /
    • 2002
  • This paper presents a faults diagnosis technique of induction motors based on a neural network. Only stator current is measured, transformed by using FFT and normalized for the training. Healthy, bearing fault, stator fault and rotor end-ring fault motors are prepared to obtain the learning data and diagnose the several faults. For more effective diagnosis, the load rate is changed by 100%, 60%, 30% of full load and the obtained are applied to the teaming process. The experimental results show the proposed method is very detectable and applicable to the real diagnosis system.

A Study of Big data-based Machine Learning Techniques for Wheel and Bearing Fault Diagnosis (차륜 및 차축베어링 고장진단을 위한 빅데이터 기반 머신러닝 기법 연구)

  • Jung, Hoon;Park, Moonsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • Increasing the operation rate of components and stabilizing the operation through timely management of the core parts are crucial for improving the efficiency of the railroad maintenance industry. The demand for diagnosis technology to assess the condition of rolling stock components, which employs history management and automated big data analysis, has increased to satisfy both aspects of increasing reliability and reducing the maintenance cost of the core components to cope with the trend of rapid maintenance. This study developed a big data platform-based system to manage the rolling stock component condition to acquire, process, and analyze the big data generated at onboard and wayside devices of railroad cars in real time. The system can monitor the conditions of the railroad car component and system resources in real time. The study also proposed a machine learning technique that enabled the distributed and parallel processing of the acquired big data and automatic component fault diagnosis. The test, which used the virtual instance generation system of the Amazon Web Service, proved that the algorithm applying the distributed and parallel technology decreased the runtime and confirmed the fault diagnosis model utilizing the random forest machine learning for predicting the condition of the bearing and wheel parts with 83% accuracy.

Fault Severity Diagnosis of Ball Bearing by Support Vector Machine (서포트 벡터 머신을 이용한 볼 베어링의 결함 정도 진단)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Dae-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.551-558
    • /
    • 2013
  • A support vector machine (SVM) is a very powerful classification algorithm when a set of training data, each marked as belonging to one of several categories, is given. Therefore, SVM techniques have been used as one of the diagnostic tools in machine learning as well as in pattern recognition. In this paper, we present the results of classifying ball bearing fault types and severities using SVM with an optimized feature set based on the minimum distance rule. A feature set as an input for SVM includes twelve time-domain and nine frequency-domain features that are extracted from the measured vibration signals and their decomposed details and approximations with discrete wavelet transform. The vibration signals were obtained from a test rig to simulate various bearing fault conditions.

A Study on Real-Time Fault Monitoring Detection Method of Bearing Using the Infrared Thermography (적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구)

  • Kim, Ho-Jong;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.330-335
    • /
    • 2013
  • Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.