• Title/Summary/Keyword: bearing fault detection

Search Result 68, Processing Time 0.023 seconds

Study on Detection Technique for Outer-race Fault of the Ball Bearing in Rotary Machinery (회전기기 볼베어링의 외륜 결함 검출 기법 연구)

  • Jeoung, Rae-Hyuck;Lee, Byung-Gon;Lee, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Ball bearings are one of main components that support the rotational shaft in high speed rotary machinery. So, it is very important to detect the incipient faults and fault growth of bearing since the damage and failure of bearing can cause a critical failures or accidents of machinery system. In the past, many researchers mainly performed to detect the bearing fault using traditional method such as wavelet, statistics, envelope etc in vibration signals. But study on the detection technique for bearing fault growth has a little been performed. In this paper, we verified the possibility for monitoring of fault growth and detection of fault size in bearing outer-race by using the envelope powerspectrum and probabilistic density function from measured vibration signals.

Analysis of the Bearing Fault Effect on the Stator Current of an AC Induction Motor (유도전동기의 고정자 전류에 미치는 베어링 고장 영향 분석)

  • Kim, Jae-Hoon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.635-640
    • /
    • 2014
  • Detection and diagnosis of incipient bearing fault in an induction motor is important for the prevention of serious motor failure. This paper presents an analysis of the effect of a faulty bearing on the stator current of an induction motor. A bearing fault leads to torque oscillations which result in phase modulation of the stator current. Since the torque oscillations cause specific frequency components at the stator current spectrum to rise sharply, the bearing fault can be detected by checking out the faultrelated frequency. In this paper, a mathematical model of the load torque oscillation caused by a bearing fault is presented. The proposed model can be used to analyze the physical phenomenon of a bearing fault in an induction motor. In order to represent the bearing fault effect, the proposed model is combined with an existing model of vector-controlled induction motors. A set of simulation results demonstrate the effectiveness of the proposed model and represent that bearing fault detection using a stator current is useful for vector-controlled induction motors.

The Comparison Between Fault Detection Methods about Early Faults in a Ball Bearing (볼 베어링의 조기 결함 검출 방법들의 비교)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.200-203
    • /
    • 2005
  • Ball bearings not only sustain the system, but permit the rotational component to rotate. Excessive radial or axial load and many other reasons can cause faults to be created and grown rapidly in each component. The grown faults make noise and vibration, which can make the system unstable. Therefore, it is important to detect faults as early as possible. For this reason, there have been many researches on fault detection method of early faults in a ball bearing. The fault defection methods can be categorized to several groups by signal processing methods. Not all the methods are efficient for finding early faults. We select representative methods known as efficient for detecting early faults and compare the results for inspecting which method is effective.

  • PDF

Bearing ultra-fine fault detection method and application (베어링 초 미세 결함 검출방법과 실제 적용)

  • Park, Choon-Su;Choi, Young-Chul;Kim, Yang-Hann;Ko, Eul-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1093-1096
    • /
    • 2004
  • Bearings are elementary machinery component which loads and do rotating motion. Excessive loads or many other reasons can cause incipient faults to be created and grown in each component. Moreover, it happens that incipient faults which were caused by manufacturing or assembling process' errors of the bearings are created. Finding the incipient faults as early as possible is necessary to the bearings in severe condition: high speed or frequently varying load condition, etc. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing fault signal makes periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

  • PDF

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

A New Method to Detect Inner/Outer Race Bearing Fault Using Discrete Wavelet Transform in Frequency-Domain

  • Ghods, Amirhossein;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.63-64
    • /
    • 2013
  • Induction motors' faults detection is almost a popular topic among researchers. Monitoring the output of motors is a key factor in detecting these faults. (Short-time) Fourier, (continuous, discrete) wavelet, and extended Park vector transformations are among the methods for fault detection. One major deficiency of these methods is not being able to detect the severity of faults that carry low energy information, e.g. in ball bearing system failure, there is absolutely no way to detect the severity of fault using Fourier or wavelet transformations. In this paper, the authors have applied the Discrete Wavelet Transform (DWT) frequency-domain analysis to detect bearing faults in an induction motor. In other words, in discrete transform which the output signal is decomposed in several steps and frequency resolution increases considerably, the frequency-band analysis is performed and it will be verified that first of all, fault sidebands become more recognizable for detection in higher levels of decomposition, and secondly, the inner race bearing faults turn out easier in these levels; and all these matter because of eliminating the not-required high energy components in lower levels of decomposing.

  • PDF