• Title/Summary/Keyword: bearing characteristics

Search Result 1,871, Processing Time 0.028 seconds

Comparison of FEA with Condition Monitoring for Real-Time Damage Detection of Bearing Using Infrared Thermography Techniques (적외선열화상을 이용한 베어링 실시간 손상검출 상태감시의 전산수치해석 비교)

  • Kim, Hojong;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.185-192
    • /
    • 2015
  • Since real-time monitoring systems, such as early fault detection, have been very important, an infrared thermography technique was proposed as a new diagnosis method. This study focused on damage detection and temperature characteristic analysis of ball bearings using the non-destructive, infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with finite element analysis (FEA) results from ANSYS. In this investigation, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally, it was confirmed that the infrared thermography technique was useful for the real-time detection of damage to bearings.

A Study on Effect of Geogrid Reinforced- Crushed stone Sub-base in Permeable Pavement System (투수성 포장체 쇄석 보조기층 지오그리드 보강효과 확인에 대한 연구)

  • Kwon, Hyeok-Min;Oh, Jeongho;Han, Shin-in
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.64-70
    • /
    • 2015
  • A rapid urbanization has increased the portion of paved layer that results in the change of water circulation system. This change leads to frequent events of flooding, drought, and urban heat island. To resolve these issues, permeable pavement system based on Low Impact Development (LID) concept is being applied to international urban areas. Therefore it is necessary to establish a rational design procedure for the permeable pavement system that reflects our environmental conditions. iDue to inherent characteristics of permeable pavement system, water infiltrates thorough the layers so it may reduce the bearing capacity of sub-layers. In this study, an effort was made to investigate the effectiveness of geogrid reinforced crushed stone subbase layer based on field experimental program along with a limited numerical analysis. It reveals that geogrid reinforced sections improve the bearing capacity by close to 20%. In addition, a light weight deflectomenter (LWDT) appears to be promising for the compaction quality control of crushed stone subbase layer in order to construct qualified permeable pavement systems.

Three-axis Spring Element Modeling of Ball Bearing Applied to EO/IR Camera and Structural Response Analysis of EO/IR Camera (EO/IR 카메라에 적용된 볼 베어링의 3축 스프링 요소 모델 및 EO/IR 카메라의 구조 응답해석)

  • Cho, Hee-Keun;Rhee, Ju-Hun;Lee, Jun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1160-1165
    • /
    • 2011
  • This study is focused on the structural dynamic responses, i.e., vibration analysis results of the high-accuracy observation multi-axial camera, which is installed and operated for the UAV (Unmanned Aerial Vehicle) and helicopter etc. And, the authors newly suggest a modeling technology of the ball bearing applied to the camera by using three-axis spring elements. The vibration analysis results well agreed to the randum vibration test results. Also, the vibration responses characteristics of the multi-axial camera through the time history analysis of the random vibration were analyzed and evaluated. The above results can be applied to the FE-modeling of the ball bearings used for the space cameras.

Measurement of Horizontal Coherence Using a Line Array In Shallow Water

  • Park, Joung-Soo;Kim, Seong-Gil;Na, Young-Nam;Kim, Young-Gyu;Oh, Teak-Hwan;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.78-86
    • /
    • 2003
  • We analyzed the measured acoustic field to explore the characteristics of a horizontal coherence in shallow water. Signal spatial coherence data were obtained in the continental shelf off the east coast of Korea using a horizontal line array. The array was deployed on the bottom of 130 m water depth and a sound source was towed at 26 m depth in the source-receiver ranges of 1-13 ㎞. The source transmitted 200 ㎐ pure tone. Topography and temperature profiles along the source track were measured to investigate the relationship between the horizontal coherence and environment variations. The beam bearing disturbance and array signal gain degradation is examined as parameters of horizontal coherence. The results show that the bearing disturbance is about ± 8° and seems to be affected by temporal variations of temperature caused by internal waves. The array signal gains show degradation more than 5㏈ by the temporal and spatial variations of temperature and by the down-sloped topography.

Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.235-241
    • /
    • 2000
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance resulting from time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to solve the existing problems, and calibration chamber tests were performed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new method increased bearing capacity, and decreased the installation cost and period for long steel pipe piles compared with existing methods.

  • PDF

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Prediction of Long Term Performance and Creep of Laminated Natural Rubber Bearings(NRB) (적층 천연고무 면진장치의 장기성능과 크리프에 대한 예측)

  • Hwang, Kee Tae;Seo, Dae Won;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.117-125
    • /
    • 2013
  • Seismic isolation has been considered and utilized in various industries as a way to prevent huge damage on to structures by large earthquakes in various industries. The laminated Laminated rubber bearings is are most frequently used in seismic isolation systems. The structural Structural safety could not be assured unless the performance of the rubber bearing is not guaranteed for the life time of the structure under the consideration that the bearing is a critical structural member to sustain vertical loads in the seismically isolated structure. However, there are few studies on the deterioration problems of rubber bearings during their service life. The long term performance of the rubber bearings was not considered in past designs of seismically isolated structures. This study evaluates the long term performance and creep characteristics of laminated natural rubber bearings that are used in seismically isolated buildings. For the this study, a set of accelerated thermal aging tests and creep tests are were performed on real specimens. The experimental results show that the natural rubber bearings would have a stable change rate of change for durability under severe environmental conditions for a long time.

Study on the Nonstationary Behavior of Slider Air Bearing Using Reassigned Time -frequency Analysis (재배치 시간-주파수 해석을 이용한 슬라이더 공기베어링의 비정상 거동 연구)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.255-262
    • /
    • 2006
  • Frequency spectrum using the conventional Fourier analysis gives adequate information about the dynamic characteristics of the slider air bearing for the linear and stationary cases. The intermittent contacts for the extremely low flying height, however, generate nonlinear and nonstationary vibration at the instant of contact. Nonlinear dynamic model should be developed to simulate the impulse response of the air bearing during slider-disk contact. Time-frequency analysis is widely used to investigate the nonstationary signal. Several time-frequency analysis methods are employed and compared for the slider vibration signal caused by the impact against an artificially induced scratch on the disk. The representative Wigner-Ville distribution leads to the severe interference problem by cross terms even though it gives good resolution both in time and frequency. The smoothing process improves the interference problem at the expense of resolution. In order to get the results with good resolution and little interference, the reassignment method is proposed. Among others the reassigned Gabor spectrogram shows the best resolution and readability with negligible interference.

Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm (면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계)

  • Choe, Byeong-Geun;Yang, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

Design of UPS system using SMB Flywheel Energy Storage System (초전도 플라이휠 에너지 저장시스템을 이용한 UPS 설계)

  • 정환명;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.610-619
    • /
    • 2000
  • This paper presents an off-line UPS using the high temperature superconductive magnetic bearing. FES(Flywheel Energy Storage) system has good advantages in compare with lead acid battery. So, high efficiency FES using high temperature SMB(superconductive magnetic bearing) was composed in this paper. The outer rotor type of PMSM(Permanent Magnet Synchronous Motor) as motor/generator was used for the experiment, and square wave current and sinusoidal wave control methods was compared for high efficiency operation of motor/generator. The circuit for in phase sinusoidal wave current control with EMF in the full speed range was designed and the proposed flywheel energy storage system was applied in single phase off-line UPS system. As the stable operation characteristics of prototype system was confirmed, the its excellence as energy storage device in Off-line UPS was proved.

  • PDF