• Title/Summary/Keyword: bearing characteristics

Search Result 1,871, Processing Time 0.03 seconds

Geochemical evidence for K-metasomatism related to uranium enrichment in Daejeon granitic rocks near the central Ogcheon Metamorphic Belt, Korea

  • Hwang, Jeong;Moon, Sang-Ho
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1001-1013
    • /
    • 2018
  • A new type of uranium occurrence in Korea was identified in pegmatitic and hydrothermally altered granite in the Daejeon area. The U-bearing parts typically include muscovite, pink-feldspar and sericite as alteration minerals. In this study, the geochemical characteristics and alteration age of the granitic rocks were examined to provide evidence for hydrothermally-enriched uranium. The K-Ar ages of muscovite coexisting with U-bearing minerals were determined as 123 and 128 Ma. The U-bearing rocks have relatively low ($CaO+Na_2O$), high $K_2O$ contents, and high alteration index values by major element geochemistry. The trace element geochemistry shows that the uraniferous rocks have significantly low Th/U ratios and strongly differentiated features. The rare earth element patterns indicate that the uraniferous rocks have a low total REE and LREE contents with depletion of Eu. Considering the geochemical variation of the granitic rock major, trace and rare earth elements, it can be concluded that uranium enrichment in pegmatites and altered granite should be genetically related to post-magmatic hydrothermal alteration of K-metasomatism after emplacement of the two-mica granite. This is the first report for geochemical characteristics of Mesozoic granite-related U-occurrences in South Korea. This study will help further research for uranium deposits with similarities in geological setting, mineralogy and age data between South China and Korea, and can also be expected to help solve the source problems related to high uranium concentrations in some groundwater occurring in the granitic terrane.

Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties (초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측)

  • Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

Breeding of New Ever-bearing Strawberry "Doha" Variety

  • Jong Nam Lee;Jong Taek Suh;Su Jeong Kim;Hwang Bae Sohn;Do Yeon Kim;Jung Hwan Nam
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.825-830
    • /
    • 2022
  • "Doha" is a new strawberry (Fragaria x ananassa Duch.) variety, which was released by the Highland Agriculture Research Institute in 2021. The "Doha" variety originates from a 2014 cross between "Saebong No. 3" and "Yeolha," both of which exhibited excellent ever-bearing characteristics, including continuous flowering and large fruits under long-day and high temperature conditions. This new cultivar was initially named "Saebong No. 13" after examining its characteristics and productivity during summer cultivation between 2015 and 2018. After regional adaptability tests, "Doha" was selected from "Saebong No. 13" as an elite cultivar. The general characteristics of "Doha" include spreading, elliptic leaves, and strong growth. The fruits are long and conical and of a red color. The plant height of "Doha" was similar to that of "Goha," but the number of leaves was lower. The number of flower clusters of "Doha" was 8.6, which was 2.8 fewer than that of the control variety, "Goha," with 11.4. The average fruit weight of "Doha" was 13.9 g, which was 4.9 g heavier than that of "Goha." The fruit hardness of "Doha" was 35.5 g·mm-2, which was 9.4 g·mm-2 harder than that of "Goha." The marketable yield of "Doha" was 26,971 kg·ha-1, 125% more than that of "Goha" with 21,479 kg·ha-1. The findings of this study suggest that "Doha" is a hard fruit and high-yielding variety of ever-bearing strawberries that could increase farming income when distributing to farmers.

Seismic Amplitude and Frequency Characteristics of Gas hydrate Bearing Geologic Model (가스 하이드레이트 지층 모델의 탄성파 진폭 및 주파수 특성)

  • Shin, Sung-Ryul;Lee, Sang-Cheol;Park, Keun-Pil;Lee, Ho-Young;Yoo, Dong-Geun;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2008
  • In gas hydrate survey, seismic amplitude and frequency characteristics play a very important role in determining whether gas hydrate exists. According to the variation of source frequency and scatterer size, we study seismic amplitude characteristics using elastic modeling applied at staggered grids. Generally speaking, scattering occurs in proportion to the square of source frequency and the scatterer volume, which has an effect on seismic amplitude. The higher source frequency is, the more scattering occurs in gas hydrate bearing zone. Therefore, BSR is hardly observed in high frequencies. On the other side, amplitude blanking zone and BSR is clearly observed in lower frequencies although the resolution is poor as a whole. Seismic reflections traveling through free-gas layer below gas hydrate bearing zone decay so severely a high frequency component that a low frequency term is dominant. Amplitude anomaly of BSR result from high acoustic impedance contrast due to free-gas, which is a very crucial factor to estimate gas hydrate bearing zone. Seismic frequency analysis is carried out using wavelet transform method that frequency component could be decomposed with time variation. In application of wavelet transform to the seismic physical experiments data, we can observe that reflections traveling through air layer, which corresponds to the free-gas layer, decay a high frequency component.

Bearing Faults Localization of a Moving Vehicle by Using a Moving Frame Acoustic Holography (이동 프레임 음향 홀로그래피를 이용한 주행 중인 차량의 베어링 결함 위치 추정)

  • Jeon, Jong-Hoon;Park, Choon-Su;Kim, Yang-Hann;Koh, Hyo-In;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.816-827
    • /
    • 2009
  • This paper deals with a bearing faults localization technique based on holographic approach by visualizing sound radiated from the faults. The main idea stems from the phenomenon that bearing faults in a moving vehicle generate impulsive sound. To visualize fault signal from the moving vehicle, we can use the moving frame acoustic holography [Kwon, H.-S. and Kim, Y.-H., 1998, "Moving Frame Technique for Planar Acoustic Holography," J. Acoust. Soc. Am. Vol. 103, No. 4, pp. 1734${\sim}$1741]. However, it is not easy to localize faults only by applying the method. This is because the microphone array measures noise(for example, noise from other parts of the vehicle and the wind noise) as well as the fault signal while the vehicle passes by the array. To reduce the effect of noise, we propose two ideas which utilize the characteristics of fault signal. The first one is to average holograms for several frequencies to reduce the random noise. The second one is to apply the partial field decomposition algorithm [Nam, K.-U., Kim, Y.-H., 2004, "A Partial Field Decomposition Algorithm and Its Examples for Near-field Acoustic Holography," J. of Acoust. Soc. Am. Vol. 116, No. 1, pp. 172${\sim}$185] to the moving source, which can separate the fault signal and noise. Basic theory of those methods is introduced and how they can be applied to localize bearing faults is demonstrated. Experimental results via a miniature vehicle showed how well the proposed method finds out the location of source in practice.

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

Composite Ground Effects on Small Area Replacement Ratio of Sand Piles (면적치환비가 작은 샌드파일 설치지반에서의 복합지반효과)

  • Chun, Byung Sik;Yeoh, Yoo Hyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.57-69
    • /
    • 2001
  • Sand pile is widely used as a ground improvement method. Although the primary purpose of constructing sand pile is accelerating consolidation, composite ground effect also can be gained by constructing sand pile. This study was accomplished to understand composite ground effect on the ground improved by sand piles which were applied as vertical drainage material when area replacement ratio was small relatively. For determining bearing capacities of origin ground and sand piles and analysing interaction between embankment and origin ground, bearing tests and earth pressure monitoring are performed. From the results, it turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However, the bearing capacity of sand pile was increased to sixty percentages when compared with origin ground. The increasement of bearing capacity could be caused the change of consolidation characteristics during the process of consolidation by overburden load. Therefore, the composite ground effects depending on stiffness increasement of sand pile would be estimated as a factor decreasing consolidation settlement.

  • PDF

The Analysis of Shaft Deformation for Evaluating the Bearing Capacity of IGM Sosketed Drilled Shaft (IGM에 근입된 말뚝의 지지력 해석을 위한 기준침하량 결정방법 제안)

  • Chun, Byung-Sik;Kim, Won-Cheul;Seo, Deok-Dong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • In this study, a new formula of settlement at the head of IGM was suggested and the applicability of suggested formula was verified with field test results. This suggested formula was the function of the settlement at the shaft head and the elastic compression of shaft. The applicability of suggested formula was verified with the result of in-situ load test. Also, the bearing capacity of drilled shaft with the IGM's theory was compared with those of classical theories. The results showed that classical method showed smaller values of bearing capacity than those of field load test data. The results of analysis also showed that the suggested formula and IGM's theory were applicable for the estimation of bearing capacity with the increase of shaft settlement. Especially, settlement correction factor($k_m$), which reflects ground condition and load transfer characteristics, increases as the applying load and shaft deformation increase. This suggested formula was applicable for medium density or higher density of soil condition and $k_m=1$ means yielding load for firm soil condition.

  • PDF

Evaluation on Bearing Capacity of Dredging Ground by Field Loading Test (현장재하시험에 의한 준설토지반의 지지력 평가방법 연구)

  • Park, Jong-Beom;Ju, Jae-Woo;Kim, Jang-Heung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • Sea gives us a lot of benefits and one of them is a role of transporting goods easily by ship. Accordingly the industrial area or the container yard is constructed either on the low sea or near the sea. Sea dredging ground is made by pumping them using dredge pump to the inside of embankment after dredging undersea soils. The dredging ground after pumping is in the slurry state but as time goes, consolidation by the own weight happens and evaporation happens at the surface of dredging ground. The evaporation causes the crest layer in the upper side of dredging ground. Under the crest layer there is still a soil of slurry state which has just little bearing resistance. This kind of characteristics makes it difficult to get a exact bearing capacity using the equations proposed until now. In this study we have performed simultaneously both the field loading tests and the cone penetration tests on the sea dredging ground. From the result of field tests, new experimental equation for the ultimate bearing capacity has been proposed. If we use the new equation, it is believed that some design of sea dredging ground could be more accurate.

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles Reinforced with Steelpipe Skirts (강관스커트 보강 조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;황정순;강인규;고용일
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.79-98
    • /
    • 1999
  • In the present study, a simple finite element method of analysis to predict non-uniform settlements at the interface between the mat foundation and foundation soils is proposed. Based on the proposed finite element method of analysis, the method to evaluate load sharing ratios of the foundation soils adjacent to the granular group piles is also presented. Further proposed is a procedure to estimate ultimate bearing capacity of the skirted granular group piles in a square pattern. To verify validity of the proposed methods and the estimated ultimate bearing capacity of the skirted group piles, comparisons are made with the results analyzed by using the PENTAGON3D FEM program. Finally, behavior characteristics with different reinforcement patterns of the skirts and the effect of an increase of ultimate bearing capacity due to the skirts are analyzed in connection with the design parameters.

  • PDF