• Title/Summary/Keyword: bearing characteristics

Search Result 1,871, Processing Time 0.026 seconds

A Parametric Study on the Characteristics of the Oil-Lubricated Wave Journal Bearing

  • Suh, Hyun-Seung;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performance of a hydrodynamic journal bearing. This concept features a wave in bearing surface. Not only straight but also twisted wave journal bearings are investigated numerically. The performances of straight and twisted bearings are compared to a plain journal bearing over a wide range of eccentricity. The bearing load and stability characteristics are dependent on the geometric parameters such as the number of waves, the amplitude and the starting point of the wave relative to the applied load direction. The bearing performance is analyzed for various configurations and for both cases of smooth and wave member notation. The wave journal bearing, especially for the twisted one, offers better stability than the plain journal bearing under all eccentricity ratios and load orientation.

  • PDF

A Parametric Study on the Characteristics of the Oil-Lubricated Wave Journal Bearing (오일윤활 웨이브 저어널 베어링의 특성해석)

  • 서현승;임윤철
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.100-107
    • /
    • 1998
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performance of a hydrodynamic journal bearing. This concept features a wave in bearing surface. Not only straight but also twisted wave journal bearing are investigated numerically. The performances of straight and twisted bearings are compared to a plain journal bearing over a wide range of eccentricity. The bearing load and stability characteristics are dependent on the geometric parameters such as the number of waves, the amplitude and the start point of the wave relative to the applied load direction. The wave journal bearing, especially for the twisted one, offers better stability than the plain journal bearing under all eccentricity and load orientation.

A Study on the Noise Characteristics of Cylindrical Roller Bearings (원통형 로울러 베어링의 소음 특성에 관한 연구)

  • 노병후;김대곤;김경웅
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.342-348
    • /
    • 2003
  • The purpose of the paper is to investigate the noise characteristics of cylindrical roller bearings. For the sake of simplicity, it is assumed that the cylindrical roller bearing is infinitely long, and there is no outside force acting on the bearing. The effects of radial clearance of the bearing, viscosity of the lubricant and number of the roller on the noise of the bearing are also examined. Results show that the fundamental frequency of the bearing noise corresponds to the multiplication of number of the roller and whirling frequency of the roller center or the retainer. The acoustical frequency spectra of the roller bearing are pure tone spectra, containing the fundamental frequency of the bearing and its super­harmonics. The low viscosity of the lubricant, high radial clearance of the bearing, and low number of the roller decrease the bearing noise. The results and discussions of the present paper could aid in the low­noise design of the cylindrical roller bearing.

Identification of Mechanical Characteristics of Superconductor proceeding Bearing (초전도 저널베어링의 기계적 특성에 대한 연구)

  • Yun, H.J.;Han, Y.H.;Han, S.C.;Jeong, N.H.;Kim, J.;Sung, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2163-2166
    • /
    • 2004
  • For designing high Tc superconductor proceeding bearing(HTSJB) which is used on a flywheel energy storage system which requests the free of the bearing loss caused by the friction, it is necessary to understand the basic characteristics of the classical superconductor proceeding bearing because the mechanical characteristics of the HTSJB are identified by the magnetic relationships between the permanent magnet(PM) and the high Tc superconductor(HTS). In this paper, using the method, frozen image model, the force problems between the PM and the HTS were solved and then the dynamic characteristics of the rotor inside of the HTSJB can be expected in advance by using the basic characteristics between the PM and the HTS. The coefficient of friction of the HTSJB was measured in the vacuum environment. From the results, the mechanical characteristics of HTSJB can be identified using the numerical models.

  • PDF

The Numerical Analysis of Spindle Motor Bearing Composed of Herringbone Groove Journal and Spiral Groove Thrust Bearing

  • Oh, Sang-Man;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 2001
  • Ball bearings have been widely used for the spindle motor bearing in various kinds of information storage devices. Recently many researchers have been trying to replace ball bearings with fluid film bearings because of their superior NRRO(non-repeatable runout) characteristics. In this study, a numerical analysis has been conducted for the complicate bearing system composed of herringbone groove journal bearing and spiral groove thrust bearing for the spindle motor of the information storage device. At first, spindle motor bearing is modeled as journal bearing part and thrust bearing part separately, and then observed various influences of geometric parameters. Previous studies had considered only the translational motion of the journal bearing. However, this study takes the additional 2-degree of freedom rotation into consideration to attempt to describe the real motion of the spindle bearing. As a result, rotational stiffness coefficients and rotational damping coefficients are obtained. In addition, a spindle bearing system made up of four bearings is modeled and interpreted at once and coefficients of dynamic characteristics of each bearing are obtained. Finally, an eigen analysis of bearing system is made with these results. Through this analysis, it is possible to estimate an unstable condition of the system for given geometric parameters and to propose a method which is able to avoid the unstable condition by a proper adjustment of geometric parameters.

  • PDF

A Study on Indicial Response Characteristics of a Gas-Lubricated Spiral-Grooved proceeding Bearing

  • Yabe, H.;Kaneshiro, T.;Hirayama, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.101-102
    • /
    • 2002
  • Indicial response characteristics of a rotor supported by a gas-lubricated, spiral-grooved proceeding bearing are studied theoretically to develop a fundamental investigation for the bearing design with considering NRRO characteristics. The trajectory of rotor movement is calculated by applying the non-linear orbit scheme against a prescribed impulse load, then two characteristic quantities are introduced to evaluate the indicial response performance of the bearing, i.e., 'maximum deviation of rotor center' and 'integrated rotor center deviation'. The effects of some design parameters of spiral grooves to these representative quantities are studied so that 'robust' design against impulse load is discussed.

  • PDF

Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load (경방향 하중을 받는 스핀들 베어링 계의 동특성 연구)

  • Choi, Chun-Suk;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.

Dynamic Characteristics and Experimental Study on the Foil Bearings for High Speed Turbo Machinery (고속 터어보기계용 공기포일베어링에 대한 동특성 해석과 실험적 연구)

  • Hwang, Pyung;Kwon, Sung-In
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.64-71
    • /
    • 1998
  • In this study deals with measurement of the vibration amplitudes of rotor-bearing system supported by foil bearing were performed experimentally, and the stability of the system were analyzed by using those results. Considering initial operating friction, compare bearing lubricated with only air and bearing surface lubricated with oil. Analyzing the transient data, the understanding of the characteristics fur startup and shutdown of rotor-bearing system are available and the dynamic characteristics of the system also can be analyzed exactly.

Lubrication Analysis of the Grooved Journal Bearing Lubricated with Pressurized High Temperature Water (고온/고압 환경 하에서 물로 윤활되는 그루브 저어널 베어링의 윤활 해석)

  • 이재선;박진석;김종인
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.105-108
    • /
    • 2002
  • Specially designed grooved journal bearings are installed in the main coolant pump for SMART (System-integrated Modular Advanced ReacTor) to support radial load on the rotating shaft. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and filled with circulating primary coolant which is pure water. The main coolant pump bearings are lubricated with this coolant without any other external lubricant supply. Because lubricating condition is too severe for this bearing to generate proper hydrodynamic film, investigation of lubrication characteristics of the journal bearing is important to satisfy life constraint of whole pump system, and the results will be applied to the analysis of dynamic characteristics of the shaft system. The bearing is made of silicon graphite which has self$.$lubricating effect. A lubrication analysis method is proposed for this vertically grooved journal bearing in the main coolant pump of SMART, and lubricational characteristics of the bearings are examined in this paper.

An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method (공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석)

  • 박신욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF