• Title/Summary/Keyword: bearing characteristics

Search Result 1,871, Processing Time 0.035 seconds

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

Evaluation on the Characteristics of Weak Soil Adjacent to Chemical Compaction Pile of Using Bottom Ash (Bottom Ash를 활용한 Chemical Compaction Pile의 주변 지반 개량 특성 평가)

  • Kim, Sang-Chel;Park, Kyung-Tae;Sung, Ik-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.163-170
    • /
    • 2007
  • To evaluate on the applicability of Chemical Compaction Pile (CCP) method to weak soil improvement, two kinds of testing chambers were fabricated and the changes of water content and shear stress associated with soil types, ages and distances from the center of pile were measured with different mixing proportions of CCP such as bottom ash, lime powder and added admixture. As results of test, it was noted that water content and shear stress of ground are mainly affected by the amount of lime powder and increase of the amount corresponds to rapid improvement of soil. And the improvement depended greatly on the types of soil also. It was finally found that CCP developed can be applicable to bearing pile as well as soil improvement since CCP has a bearing capacity enough to carry loads.

Development of BIM Based Analytical Model for Laterally Loaded Piles with Defects and Application (BIM 기반의 단면이 손상된 말뚝의 수평 거동 해석 모형 개발과 적용)

  • Jung, Young Wook;Ahn, Jaeyoon;Kim, Hyeonseoung;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.179-188
    • /
    • 2024
  • Nondestructive pile integrity tests are used to confirm the construction of drilled shafts as the foundation of many facilities. However, the safety of the foundation is determined only by the presence or absence of defects, and the location and scale of defects are not considered. In this study, we propose an analysis model for the lateral bearing capacity and section force connected building information modeling (BIM) by extracting the cross-sectional characteristics of the defect in piles and reviewing the safety of piles with defects. Defects at the top of piles had more effect on the change in the deflection of the pile head. Moreover, the decrease in the axial force-bending moment interaction diagram due to cross-sectional reduction increased the risk of destruction of the piles more than the change in the bending moments due to defects. The proposed method can help review the comprehensive safety of piles.

Growth and Fruiting Characteristics, and Nut Qualities of Castanea crenata by Low-Concentrated Liquid Fertilizer (저농도 액비처리에 따른 밤나무 생장 및 결실특성과 과실품질)

  • Lee, Uk;Hwang, Suk-In;Kim, Mahn-Jo;Kim, Ji-Hye
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.432-440
    • /
    • 2011
  • The objective of this study was to investigate growth and fruiting characteristics (e.g., nut qualities) of chestnut (Castanea cerenata) after applying various fertilizer treatments at the cultivation site in Suncheon. Fertilizer treatments were designed as follow: liquid fertilizer, chemical fertilizer, organic fertilizer, and control. Both liquid and chemical fertilizer treatments provided the best growth in height and basal diameter. In addition, these two treatments were very effective for crown width of the trees between both east-west and north-south orientation. The liquid fertilizer treatment was effective on total length of the fruiting branch and length of the bearing to terminate part. Both liquid and chemical fertilizer treatments produced the longest length of basal to bearing part compared to the other two treatments. The liquid fertilizer treatment showed the most thickened basal diameter of the fruiting branch and the greatest diameter of above and below the bearing burr part. Elongation Index of the fruiting branch (EI) was the highest with liquid fertilizer treatment and the remaining four indices (Production Index of fruiting branch, PI; Ratio of Diameter between below and above bearing burr part, RD; Growth Index of fruiting branch diameter, GI; Thickness Index of fruiting branch or dormant branch, TI) were the highest with the chemical fertilizer treatment. Total number of produced branch per fruiting mother branch and number of small and weak branches per fruiting mother branch were highest on the control and liquid fertilizer treatment; however, all treatments produced similar numbers. The chemical and organic fertilizer treatments produced a high number of fruiting branches per fruiting mother branch, while organic and liquid fertilizer treatments produced a high number of burr per fruiting branch. The rate of commercializing on the basis of nut weight and quantity was higher on control (87.5%) than chemical fertilizer treatment (84.6%); however, the rate was even lower on liquid fertilizer treatment (84.3%) and organic fertilizer treatment (82.7%). The liquid fertilizer treatment showed the highest average of nut weight, while chemical fertilizer treatment showed the highest average number of fruiting burr. There was no significant difference in average number of normal nuts per burr among treatments. The yield per tree was high on chemical (8.2 kg) and liquid (8.0 kg) fertilizer treatments, but there was no significant difference among treatments. In the rate of nut grade on the basis of nut weight and quantity, the liquid fertilizer treatment, 43.5% and 34.3% more than large nut respectively, produced higher value chestnuts compared to other treatments.

Mineralogy of Garnierite from New Caledonian Ni Lateritic Ore (뉴칼레도니아 니켈 라테라이트 광석 내 가니어라이트의 광물학적 특징)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.253-263
    • /
    • 2011
  • Mineralogical characteristics of garnierite ores from the Nakety, Kouaoua, and Ouaco Ni laterite deposits in New Caledonia are investigated using optical microscopy, powder X-ray diffractometer, and electron proble microanalyzer. Green garnierite ores have colloform, cellular, and boxwork texture, which are formed by precipitation under low temperature surface environment. They are mainly composed of Ni-bearing talc~willemseite series mineral and partly of lizardite. In Ni-bearing talc~willemseite series mineral, NiO contents are Ouaco (average 40.63%), Nakety (average 28.58%), and Kouaoua (average 24.90%), in descending order. Ni atomic percentage replacing Mg in octahedral site are 43.5~85.0%. Dark brown garnierite ores show cellular or boxwork texture, and consist of lizardite~Ni lizardite with some Ni-bearing talc~willemseite series mineral. Ni contents in lizardite~Ni lizardite are 1.14~4.06 wt. % and Ni atomic percentage replacing Mg in octahedral site 1.7~6.8%. Low NiO content in dark brown garnierite attributes to high Fe content replacing Mg in octahedral site.

A study on the risk and settlement evaluation of a shield TBM excavated in soft marine sedimentary soils (해저 연약 퇴적층 지반 쉴드 TBM 위험요인 평가 및 장비 침하에 관한 연구)

  • You, Kwang-Ho;Park, Chi-Myeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • Recently, a 3,250 meter-long tunnel was constructed beneath the sea bed formed of composite sedimentary soils to transport reusable waste heat gas of industrial complex in the west coast of Korea. Some risks such as machine settlement always exist due to the uncertainties of geological and construction factors during the subsea shield TBM tunnelling. In this construction site, the deviation of tunnel alignment caused by shield TBM settlement was occurred during excavation. It was examined that the lack of bearing capacity of soft clay was a main cause. This paper evaluates the risk of shield TBM tunnelling considering the ground conditions. Correlation between machine settlement and its advance rate was evaluated through the analytical equation in which bearing capacity is considered and a 3-D numerical analysis which can simulate the TBM advance condition (in other words, the dynamic condition). It was found out that a shield TBM could settle due to the insufficient bearing capacity of soft clay layers. In order to prevent such the problem, the best advance rate proper to the ground characteristics is needed to be applied. In the ground conditions of the section of interest, it was turned out that if the shield TBM advance rate was maintained between 35 mm/min and 40 mm/min, the machine settlement could be avoided.

Geophysical Investigation of Gas Hydrate-Bearing Sediments in the Sea of Okhotsk (오호츠크해 가스하이드레이트 퇴적층의 지구물리 탐사)

  • Jin, YoungKeun;Chung, KyungHo;Kim, YeaDong
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.207-215
    • /
    • 2004
  • As the sea connecting with the East Sea, the Sea of Okhotsk is the most potential area of gas hydrates in the world. In other to examine geophysical structures of gas hydrate-bearing sediments in the Sea of Okhotsk, the CHAOS (hydro-Carbon Hydrate Accumulation in the Okhotsk) international research expedition was carried out in August 2003. In the expedition, high-resolution seismic and geochemical survey was also conducted. Sparker seismic profiles show only diffusive high-amplitude reflections without BSRs at BSR depth. It means that BSR appears to be completely different images on seismic profiles obtained using different frequencies. Many gas chimneys rise up from BSR depth to seafloor. The chimneys can be divided into two groups with different seismic characteristics; wipe-out (WO) and enhanced reflection (ER) chimneys. Different seismic responses in the chimneys would be caused by amount of gas and gas hydrates filling in the chimneys. In hydroacoustic data, a lot of gas flares rise up several hundreds meters from seafloor to the water column. All flares took placed at the depths within gas hydrate stability zone. It is interpreted that gas hydrate-bearing sediments with low porosity and permeability due to gas hydrate filling in the pore space make good pipe around gas chimneys in which gas is migrating up without loss of amount. Therefore, large-scale gas flare at the site on gas chimney releases into the water column.

  • PDF

Geochemical Characteristics of Allanite from Rare Metal Deposits in the Chungju Area, Chungcheongbuk-Do (Province), Korea (충주지역 희유원소광상에서 산출되는 갈렴석의 지구화학적특성)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.545-559
    • /
    • 1996
  • Rare metal (Nb-Zr-REE) ore deposits are located in the Chungju area. Geotectonically, the rare metal ore deposits are situated in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits are distributed in Kyemyeongsan Formation which consist of schist and alkaline igneous rocks. Alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nd, Nd-Th group minerals. More than 15 RE and REE minerals are found in the ore deposits. Allanite, one of the Ce-La rich REE minerals belonging to the epidote group, is the most common mineral in the studied area. The allanite- bearing rocks may be devided into seven types by features of occurrence and mineral associations; zircon type (ZT), allanite-vein type (AT), feldspar type (KT), fluorite type (FT), quartz-mica type (QT), iron-oxide type (MT), and amphibole type (HT). The allanite veins (AT) and zircon rich rocks (ZT) contain the highest total REE contents. Differences in REE abundance can be interpreted in terms of varying portions of magmatic hydrothermal fluid. Petrographical and chemical data are presented for allanites which were collected from different types. The allanites show wide variations in optical properties, due in part to differences in their chemical composition (depending on the types) and to the degree of crystallinity of the individual specimens. Allanite metamicts in biotite are generally surrounded by well developed pleochroic haloes. Usually, allanite is accompanied by zircon and other REE-bearing minerals. CaO and total REE contents $({\sum}RE_2O_3)$ range from 9.29 to 18.79% and 11.66 to 26.31%, respectively. Also, SiO, (28.87~32.61%), $Al_2O_3$ (8.30~16.88%), and $Fc_2O_3$ (16.74~24.38%) contents show varying contents from type to type. The ${\sum}RE_2O_3$ of allanite has positive relationships with $Fe_2O_3$ and negative relaton with CaO, $SiO_2$, and $Al_2O_3$ Backscattered electron microscope images (BEl) of allanite shows that the its mineral composition and texture is very complex. The allanite-bearing hosts show distinct light REE enrichment with strong negative Eu anomaly except for HI. The HT has an almost flat REE distribution pattern with a small negative Eu anomaly. The chemical variation of the allanites with occurrences and mineral association can be related to condition of temperature and oxidation states in precipitation environment.

  • PDF

Application of The Dynamic Cone Penetrometer for Strength Estimation of Pavement Foundation (현장에서의 동적관입시험을 이용한 노상토의 지지력 평가연구)

  • An, Ji-Hwan;Yang, Sung-Lin;Park, Hee-Mun;Kwon, Su-Ahn
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.17-26
    • /
    • 2004
  • The in-situ California Bearing Ratio (CBR) test has been widely used for evaluating the subgrade condition in asphalt concrete pavements. However, because the in-situ CBR test is expensive and takes plenty of time for operation, it is very difficult to figure out the in-situ characteristics of subgrade strength in detail. For faster and economical operation, the Dynamic Cone Penetrometer (DCP) has been often utilized for estimating the subgrade strength in the field. The relationship between the CBR value and DCP index obtained from the DCP testing has been studied using the laboratory and in-situ testing by other foreign researchers. The objective of this study is to determine the relationship between in-situ CBR value and DCP index of the subgrade materials used in Korea. The DCP index for evaluating the strength of subgrade materials produced in Korea is presented in this paper. Research results propose the regression equation to explain the relationship between the CBR and DCP tests. The in-situ CBR values of subgrade materials range from 20 to 45% indicating the good and sound subgrade condition.

  • PDF

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.