• Title/Summary/Keyword: bearing capacity of foundation

Search Result 397, Processing Time 0.032 seconds

Evaluation of the Effect of Initial Condition of the Granular Assembly on the Bearing Capacity of the Shallow Foundation using Photoelastic Measurement Technique (광탄성 측정 기법을 이용한 입상체 초기 조건의 얕은 기초 지지력에 대한 영향 평가)

  • Shin, Sang-Young;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.471-491
    • /
    • 2016
  • Traditional limit equilibrium method needs an assumption of the failure surface to calculate the bearing capapcity of the shallow foundation. From the viewpoint of the mechanics of granular materials, however, the failure of the soil mass is initated by the local buckling of the contact force chains. In this study we observed the directional distribution of the contact force chains in the granular assembly stacked by model particles subjected to the model shallow foundation during loading. Two sets of the assemblies with a regular structure and initially local imperfection were prepared for tests. Existence of the initial local imperfection has a significant effect on the directional distribution of the contact force chains. The bearing capacity of the assembly with local imperfection is only 67% the capacity of the assembly with the regular structure.

The Analysis of Bearing Capacity Behavior of Strip Footing on Geogrid-Reinforced Sand over a Soft Clay by Numerical Method (수치해석방법에 의한 연약지반위의 보강띠기초의 지지력거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Earth reinforcement by using geogrids as reinforcing materials are widely applied to several earth structures. The bearing capacity of geogrid reinforced foundation soils is usually examined on based on the rigid plasticity theory or Limit Equilibrium Method. Method of analysis such Limit Equilibrium Method provide no detail information about failure behaviour or strain which develop in the reinforcement or foundation. In this paper the analysis of failure behaviour of strip footing on geogrid-reinforced sand over a soft caly was investigated by using a numerical method. A series of finite element analyses were performed on a geogrid-reinforced strip footing over a soft clay including number of geogrid layers, length, depth. We effectively investigated the failure behaviour and improvement of bearing capacity on the reinforced foundation soil by using FEM program.

  • PDF

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

A Study on the Bearing Capacity of Shallow Foundation according to the Reinforcement Geocell Layer (지오셀 보강 층수에 따른 얕은 기초의 지지력에 관한 연구)

  • Lee, Kyong-Cheon;Baek, Young-Sik;Park, Young-Hun;Kim, Nag-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.85-96
    • /
    • 2003
  • The Geocell system is the advanced system of Geo-grids, and is one of geosynthetics used for earth reinforcement of weak soil. It is the way to increase earth strength and bearing capacity by using three dimension type of geo-composite. This paper analyzed the bearing capacity mechanism of Geocell system for earth reinforcement. Plate loading tests under the model laboratory condition were performed, and the increase of bearing capacity and the decrease of settlement with shallow foundation were evaluated.

  • PDF

Reinforcement of Building Foundation by the Low Slump Mortar Grout (저유동성 몰탈형 주입재에 의한 건물기초보강)

  • 천병식;고용일;권형석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.71-76
    • /
    • 2000
  • In generally, grouting consists of injecting a suspension or solution into the voids of soils. The low slump mortar grout has been used in America since 1950's. The Compaction Grouting, the injection of a very stiff under relatively high pressure, form a cylinderical grout support pile. The grout generally does not enter soil pores but remains in homogeneous mass that gives controlled displacement either to compact loose soils, or for lifting of structures, or both. In this paper, on the case of the reinforcement construction of 00 plant that the foundation's bearing capacity is insufficient and is to reinforce the foundation, a study has been peformed to analyze the effectiveness of the ground improvement. The bearing capacity of the Compaction Pile has been verified by the S.P.T and the settlement of the improved ground has been monitored rising the magnetic extensometer.

  • PDF

On the Counter Plan of Foundation Method being based on N-Value in the Soft-Ground (연약지반에 있어 N치에 의한 기초공법 대책연구)

  • Lee, Y.H.;Lee, D.M.
    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.69-90
    • /
    • 1996
  • This study is related to save the bearing capacity from using Meyerhof formula namely, static mechanics formula with the S.P.T(N value) of the soft ground and is to choose the soft ground improvement method by the using of total load for the proper method of the pile foundation and then to design the most suitable pile foundation to fit the actual circumstance. The purpose of this study is calculating the diameter of the pile foundation by static mechanics formula and introducing the optimum design condition from the result of the bearing capacity for using N value of the S.P.T obtained from the deep soft ground about the piles such as P.H.C pile, pipe and cast-in-place pile of big diameter, etc. As above-mentioned, it is considered that the use of P.H.C pile or pipe pile is advisable on the synthetical investigation and that the selection of cast-in-place pile method is desirable in terms of the constructive safety and durability.

  • PDF

A Study on the Characteristics of Bearing Capacity for Rammed Aggregate Pier in Sand (사질토지반에서 짧은 쇄석다짐말뚝의 배치형태에 따른 지지력특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Young-Hun;Yoo, Woo-Hyun;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.195-198
    • /
    • 2009
  • Rammed Aggregate Pier method is intermediate foundation of deep and shallow foundation, it has been built on world wide. But the investigation and research in domestic is not accomplished. In this paper, examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from differenciate the spacing of piles, namely installed rammed aggregate pier. Strain control test was conducted to determine the bearing capacities of the piers; 20mm, 30mm and 40mm diameter drilling equipment to drill holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, the space between each piers narrowed, settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, allows greater chances to have resistance to deformation, shows improved stability of structures.

  • PDF

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

The Effect of Base Projecting Walls on the Bearing Capacity and Settlement of Shallow Foundations on Soft Ground (저면돌출벽을 이용한 연약지반상 얕은기초의 지내력 증대 효과)

  • Lim, Jongseok;Park, Seunghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1523-1528
    • /
    • 2013
  • It is necessary to develop the simple and efficient technique that ease entry of man and equipment and take the role of foundations of temporary or small structures on the soft ground. This study intends to verify the effects on the increase of bearing capacity of base projecting walls under shallow foundations and to investigate the variance of the bearing capacity of the foundations according to the interval and length of the walls. For this, model soft ground in the chamber equipped with loading apparatus is made and the loading tests on the model foundations with base projecting walls of various intervals and lengths using the apparatus are performed with measuring the loads and settlements. The results show that the base projecting walls under shallow foundations on soft ground are effective on the increase of bearing capacity and the more the number and length of the walls the larger the effects. And, when the ratio of interval to length of the walls is 1, i.e. the shape forming the base of the foundation and the walls is square, the bearing capacity is increased by 25% and the effect is optimum.