• 제목/요약/키워드: beams(supports)

검색결과 111건 처리시간 0.026초

Seismic repair of reinforced concrete beam-column subassemblages of modern structures by epoxy injection technique

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.543-563
    • /
    • 2002
  • The use of the epoxy pressure injection technique to rehabilitate reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Two one-half-scale exterior beam-column joint specimens were exposed to reverse cyclic loading similar to that generated from strong earthquake ground motion, resulting in damage. Both specimens were typical of new structures and incorporated full seismic details in current building codes. Thus the first specimen was designed according to Eurocode 2 and Eurocode 8 and the second specimen was designed according to ACI-318 (1995) and ACI-ASCE Committee 352 (1985). The specimens were then repaired with an epoxy pressure injection technique. The repaired specimens were subjected to the same displacement history as that imposed on the original specimens. The results indicate that the epoxy pressure injection technique was effective in restoring the strength, stiffness and energy dissipation capacity of specimens representing a modem design.

A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces

  • Ahn, Namshik;Lee, Kangsu
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.501-515
    • /
    • 2011
  • Sandwich elements have high flexural rigidity and high strength per density. They also have excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin's plate theory is studied from a Hamilton's principle point of view. This theory is modified to include the influence of shear deformation and rotary inertia, and the equation of motion is derived using energy relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates are identical to the sandwich plates currently used in various structural elements of surface effect ships (SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear moduli are obtained from the four-point bending tests on the sandwich beams.

Seismic repair of exterior R/C beam-to-column joints using two-sided and three-sided jackets

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.17-34
    • /
    • 2002
  • The use of local two-sided and three-sided jacketing for the repair and strengthening of reinforced concrete beam-column joints damaged by severe earthquakes is investigated experimentally and analytically. Two exterior beam-column joint specimens ($O_1$ and $O_2$) were submitted to a series of cyclic lateral loads to simulate severe earthquake damage. The specimens were typical of existing older structures built in the 1960s and 1970s. The specimens were then repaired and strengthened by local two-sided or three-sided jacketing according to UNIDO Manual guidelines. The strengthened specimens ($RO_1$ and $RO_2$) were then subjected to the same displacement history as that imposed on the original specimens. The repaired and strengthened specimens exhibited significantly higher strength, stiffness and better energy dissipation capacity than the original specimens.

IPB 덕트의 진동저감과 기초에 대한 동특성 고찰 (Investigating Dynamic Characteristics on Support Base for IPB Duct System and Reducing Vibration for IPB Duct)

  • 양경현;조철환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.495-500
    • /
    • 2001
  • Because of resonance between natural frequency of the second floor base for IPB(Isolated Phase Bus) duct supports in a power plant and operation frequency of the turbine, there was high amplitude vibration on IPB duct. To reduce vibration of IPB duct, Firstly it was set a FEM model to seek the mode shape for the concrete structure. Secondly, it was carried out dynamic analysis for the FEM model. Lastly, because the natural frequency of the concrete structure could not be changed, it was changed supports position for the IPB duct near to beams. It resulted in reducing vibration of IPB duct.

  • PDF

개구부를 갖는 철근콘크리트 깊은 보의 전단거동에 대한 실험 연구 (An Experimental Study on the Shear Behavior of R/C Deep Beems with Web Opentings)

  • 임채문;이진섭;양창현;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.280-285
    • /
    • 1996
  • The shear behavior of reinforced concrete deep beams with web opennings has been scrutinized experimentally to verify the influences of the structural parameters such as size, shape, location and reinfrocements of web openings, and shear span ratio. A total of 22 specimens has been tested under one or two point loading conditions at the laboratory. In the tests most specimens have shown shear failures with inclined cracks from the loacing points to the supports through openings. The ultimate strengths of the specimens measured from the tests have shown wide differences depending on the locations of the openings which deter the formation of the compression struts between the loading points and the supports. The effects of the reinforcements and the geomtry of the openings on the shear strengths and the crack developments have been carefully checked and analyzed.

  • PDF

Performance of structural-concrete members under sequential loading and exhibiting points of inflection

  • Jelic, I.;Pavlovic, M.N.;Kotsovos, M.D.
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.99-113
    • /
    • 2004
  • The article reports data on, and numerical modelling of, beams exhibiting points of inflection and subjected to sequential loading. Both tests and analysis point to inadequacies in current codes of practice. An alternative design methodology, which is strongly associated with the notion that contraflexure points should be designed as "internal supports", is shown to produce superior performance even though it requires significantly less secondary reinforcement than that advocated by codes.

균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구 (A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending)

  • 김종민;김승준;박종섭;강영종
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.237-246
    • /
    • 2008
  • 연속경간을 가지는 I형강 교량은 내부 지점근처에서 상대적으로 큰 부모멘트가 발생하게 되는데, 이에 경제적인 단면 활용을 위하여 내부 지점부위의 상부 및 하부플랜지에 플레이트를 보강한 변단면을 사용하고 있다. 본 연구에서는 기존 탄성 횡-비틀림 좌굴식에 관한 연구를 토대로 하여 비탄성 구간에 있는 계단식 I형보의 횡-비틀림 좌굴강도를 범용구조해석프로그램 ABAQUS(2006)를 이용하여 산정하고, 간편한 설계식을 제안하고 있다. 유한요소해석에는 4절점 쉘요소인 S4R이 사용되었고, 국내외에서 많이 사용되는 I형강 단면(${W36{\times}160}$)을 대상으로 하였다. 양단 및 한쪽 끝단에 계단식 단면을 가지는 보에 대해서 고려하였으며, 플랜지 길이방향 비, 너비방향 비, 두께의 비로 계단식 I형보를 나타내었다. 해석에 사용된 매개변수는 각각 27가지 및 36가지 조합이고, 하중조건으로 보의 순수굽힘이 발생하는 균일모멘트를 적용시켰으며, 비탄성 구간범위 내에 있는 비지지 길이에 대하여 구조해석을 수행하였다. 비탄성 횡-비틀림 거동을 보기 위하여 잔류응력 및 초기결함을 고려한 비선형해석을 실시하였는데, Pi(1995)등이 고려한 잔류응력의 형상과 국내 I형강 표준 치수 허용치에 근거하여 부재 길이의 0.1%를 초기제작오차로 고려하였다. 본 연구 결과는 다양한 형식의 I형보가 사용되는 빌딩 및 교량의 경제적이고 합리적인 설계의 근간을 제공해 줄 것이며, 향후 다양한 하중 조건을 가지는 양단 또는 일단 계단식 단면 변화보의 비탄성 횡-비틀림 좌굴강도를 계산할 수 있는 설계식 개발에 적극 활용 될 수 있을 것이다.

강합성 2-거더교의 가로보 배치 간격 및 소요 휨강성에 관한 연구 (A Study on the Spacing and Required Flexural Rigidity of Cross Beams in Composite Two-Steel Girder Bridges)

  • 박용명;조현준;황민오
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.1-10
    • /
    • 2004
  • 본 논문에서는 수직 및 수평 브레이싱을 생략하고 I-형 거더를 가로보만으로 연결한 강합성 2-거더교에서 가로보의 적정 배치간격 및 소요 휨강성의 산정을 위한 연구를 수행하였다. 이를 위해 지간 40m의 단순교와 40+50+40m의 2차로 연속교를 예제교량으로 시산 설계하였다. 본 교량에 대해 중간가로보의 배치 간격과 휨강성을 매개변수로 하여 합성전 후 고정하중, 활하중, 풍하중 및 지진하중에 대한 해석을 수행하고 설계하중조합에 대한 응력 및 활하중 분배효과를 분석하였다. 한편, 강재 거더와 가로보의 격자구조에 대해 합성전 고정하중을 고려한 재료-기하 비선형해석으로부터 횡비틀림 좌굴강도를 평가하였다. 이상의 해석 결과를 토대로 지점부 및 중간가로보의 적정 배치 간격과 소요 휨강성을 제안하였다.

Analytical study of slant end-plate connection subjected to elevated temperatures

  • Zahmatkesh, F.;Osman, M.H.;Talebi, E.;Kueh, A.B.H.
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.47-67
    • /
    • 2014
  • Due to thermal expansion, the structural behaviour of beams in steel structures subjected to temperature increase will be affected. This may result in the failure of the structural members or connection due to extra internal force in the beam induced by the thermal increase. A method to release some of the thermally generated internal force in the members is to allow for some movements at the end supports of the member. This can be achieved by making the plane of the end-plate of the connection slanted instead of vertical as in conventional design. The present paper discusses the mechanical behaviour of beams with bolted slant end-plate connection under symmetrical gravity loads, subjected to temperature increase. Analyses have been carried out to investigate the reduction in internal force with various angles of slanting, friction factor at the surface of the connection, and allowable temperature increase in the beam. The main conclusion is that higher thermal increase is tolerable when slanting connection is used, which means the risk of failure of structures can be reduced.

Damage detection for beam structures based on local flexibility method and macro-strain measurement

  • Hsu, Ting Yu;Liao, Wen I;Hsiao, Shen Yau
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.393-402
    • /
    • 2017
  • Many vibration-based global damage detection methods attempt to extract modal parameters from vibration signals as the main structural features to detect damage. The local flexibility method is one promising method that requires only the first few fundamental modes to detect not only the location but also the extent of damage. Generally, the mode shapes in the lateral degree of freedom are extracted from lateral vibration signals and then used to detect damage for a beam structure. In this study, a new approach which employs the mode shapes in the rotary degree of freedom obtained from the macro-strain vibration signals to detect damage of a beam structure is proposed. In order to facilitate the application of mode shapes in the rotary degree of freedom for beam structures, the local flexibility method is modified and utilized. The proposed rotary approach is verified by numerical and experimental studies of simply supported beams. The results illustrate potential feasibility of the proposed new idea. Compared to the method that uses lateral measurements, the proposed rotary approach seems more robust to noise in the numerical cases considered. The sensor configuration could also be more flexible and customized for a beam structure. Primarily, the proposed approach seems more sensitive to damage when the damage is close to the supports of simply supported beams.