• 제목/요약/키워드: beam-hinge collapse mechanism

검색결과 6건 처리시간 0.015초

철골모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법 (Genetic Algorithm Based Optimal Seismic Design Method for Inducing the Beam-Hinge Mechanism of Steel Moment Frames)

  • 박효선;최세운
    • 한국전산구조공학회논문집
    • /
    • 제29권3호
    • /
    • pp.253-260
    • /
    • 2016
  • 본 연구에서는 철골모멘트골조의 보-힌지 붕괴모드를 유도하는 최적 내진설계기법을 제안한다. 이는 유전자알고리즘을 사용하며, 기둥의 소성힌지 발생을 억제하는 제약조건을 설정하여 보-힌지 붕괴모드를 유도한다. 제안하는 기법은 구조물량를 최소화하고 에너지소산능력을 최대화하는 목적함수를 사용한다. 제안하는 기법은 9층 철골모멘트골조 예제 적용을 통해 검증한다. 예제 적용을 통해 철골모멘트골조의 보-힌지 붕괴모드를 유도하기 위해 요구되는 기둥-보 강도비를 평가한다. 패널존에 대한 3가지 모델링 기법을 각각 적용하여 모델링 조건에 따른 휨강도비 영향이 추가적으로 검토된다.

철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법 (Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames)

  • 최세운
    • 한국전산구조공학회논문집
    • /
    • 제36권6호
    • /
    • pp.399-405
    • /
    • 2023
  • 본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.

Relocation of plastic hinge in exterior beam-column joints using inclined bars

  • P.Asha;R.Sundararajan;K.Kumar
    • Earthquakes and Structures
    • /
    • 제27권4호
    • /
    • pp.317-329
    • /
    • 2024
  • Recent earthquakes have demonstrated that even when the beams and columns in a reinforced concrete frame remain intact, the integrity of the whole structure is undermined if the joint where these members connect fails. A good seismic performance of reinforced concrete frames depends on their ability to absorb seismic energy through inelastic deformations and to avoid a sudden development of collapse mechanism in event of a strong earthquake shaking. The primary objective of this investigation is to move the plastic hinge away from the beam-column joint region and hence reducing the damage to the joint region. In this research, the seismic performance of exterior beam-column joints with four types of confinement in joint region and inclined bars from column to beam is investigated experimentally. Control specimens without inclined bars and four types of confinement Square Hoop, Square Spiral, Circular Hoop and Circular Spiral were tested along with inclined bars were tested. Seismic performance was determined via load-deflection response, ductility, stiffness, energy dissipation, strain of beam reinforcement and crack pattern. Out of the four specimens with inclined bars, seismic performance of joint with Square Spiral confinement gave the best performance in terms of all parameters.

A controlled destruction and progressive collapse of 2D reinforced concrete frames

  • El houcine, Mourid;Said, Mamouri;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.111-139
    • /
    • 2018
  • A successful methodology for modelling controlled destruction and progressive collapse of 2D reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects including the failure mechanism creation, and dynamic motion in failure represented with multibody system (MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second phase deals with simulation and control of the progressive collapse of the structure up to total demolition, using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on MBS. The contact between structure and ground is also considered in simulation of collapse process. The efficiency of the proposed methodology is proved with several numerical examples including six story reinforced concrete frame structures.

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.327-335
    • /
    • 2017
  • To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.

Proposals for flexural capacity prediction method of externally prestressed concrete beam

  • Yan, Wu-Tong;Chen, Liang-Jiang;Han, Bing;Wei, Feng;Xie, Hui-Bing;Yu, Jia-Ping
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.363-375
    • /
    • 2022
  • Flexural capacity prediction is a challenging problem for externally prestressed concrete beams (EPCBs) due to the unbonded phenomenon between the concrete beam and external tendons. Many prediction equations have been provided in previous research but typically ignored the differences in deformation mode between internal and external unbonded tendons. The availability of these equations for EPCBs is controversial due to the inconsistent deformation modes and ignored second-order effects. In this study, the deformation characteristics and collapse mechanism of EPCB are carefully considered, and the ultimate deflected shape curves are derived based on the simplified curvature distribution. With the compatible relation between external tendons and the concrete beam, the equations of tendon elongation and eccentricity loss at ultimate states are derived, and the geometric interpretation is clearly presented. Combined with the sectional equilibrium equations, a rational and simplified flexural capacity prediction method for EPCBs is proposed. The key parameter, plastic hinge length, is emphatically discussed and determined by the sensitivity analysis of 324 FE analysis results. With 94 collected laboratory-tested results, the effectiveness of the proposed method is confirmed, and comparisons with the previous formulas are made. The results show the better prediction accuracy of the proposed method for both stress increments and flexural capacity of EPCBs and the main reasons are discussed.