• 제목/요약/키워드: beam theories

Search Result 189, Processing Time 0.026 seconds

Y-branch Directional Coupler Optical Switch/Modulator (Y-분기 방향성 결합기 광 스위치/변조기)

  • 김창민;한상필;송낙운
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1108-1116
    • /
    • 1993
  • Y-branch directional coupler optica1 switches with two different coupling lengths are fabricated on z-cut LiNbO3 and tested at r = 1.3 rm. The normal mode and coupled mode theories are utilized to calculate device coupling length and switching voltage. Simulation of the beam propagation method (BPM) is also performed to confirm the device coupling lengths. For dc operation, experimental results are in good agreement with the modee theories expectation.

  • PDF

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Novel Method for Numerical Analyses of Tapered Geometrical Non-linear Beam with Three Unknown Parameters (3개의 미지변수를 갖는 변단면 기하 비선형 보의 수치해석 방법)

  • Lee, Byoung Koo;Oh, Sang Jin;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • This paper deals with a novel method for numerical analyses of the tapered geometrical non-linear beam with three unknown parameters, subjected a floating point load. The beams with hinged-movable end constraint are chosen as the objective beam. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The first order simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. A novel numerical method for solving these equations is developed by using the iteration technique. The processes of the solution method are extensively discussed through a typical numerical example. For validating theories developed herein, laboratory scaled experiments are conducted.

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method

  • Ghandi, Elham;Shiri, Babak
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.759-769
    • /
    • 2017
  • The effect of central axial load on natural frequencies of various thin-walled beams, are investigated by some researchers using different methods such as finite element, transfer matrix and dynamic stiffness matrix methods. However, there are situations that the load will be off centre. This type of loading is called eccentric load. The effect of the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams is a subject that has not been investigated so far. In this paper, the mentioned effect is studied using exact dynamic stiffness matrix method. Flexure and torsion of the aforesaid thin-walled beam is based on the Bernoulli-Euler and Vlasov theories, respectively. Therefore, the intended thin-walled beam has flexural rigidity, saint-venant torsional rigidity and warping rigidity. In this paper, the Hamilton‟s principle is used for deriving governing partial differential equations of motion and force boundary conditions. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, in order to verify the accuracy of the presented theory, the numerical solutions are given and compared with the results that are available in the literature and finite element solutions using ABAQUS software.

Vibration analysis of heterogeneous nonlocal beams in thermal environment

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.251-272
    • /
    • 2017
  • In this paper, the thermo-mechanical vibration characteristics of functionally graded (FG) nanobeams subjected to three types of thermal loading including uniform, linear and non-linear temperature change are investigated in the framework of third-order shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. Hence, applying a third-order shear deformation beam theory (TSDBT) with more rigorous kinetics of displacements to anticipate the behaviors of FG nanobeams is more appropriate than using other theories. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The obtained results are compared with those predicted by the nonlocal Euler-Bernoulli beam theory and nonlocal Timoshenko beam theory and it is revealed that the proposed modeling can accurately predict the vibration responses of FG nanobeams. The obtained results are presented for the thermo-mechanical vibration analysis of the FG nanobeams such as the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

Free and forced analysis of perforated beams

  • Abdelrahman, Alaa A.;Eltaher, Mohamed A.;Kabeel, Abdallah M.;Abdraboh, Azza M.;Hendi, Asmaa A.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.489-502
    • /
    • 2019
  • This article presents a unified mathematical model to investigate free and forced vibration responses of perforated thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) based on perforated structure.

Free vibration responses of nonlinear FG-CNT distribution in a polymer matrix

  • Zerrouki, Rachid;Hamidi, Ahmed;Tlidji, Youcef;Karas, Abdelkader;Zidour, Mohamed;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • The object of this paper is to investigate the free vibration behavior under the effect of carbon nanotube distribution in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) by using higher-order shear deformation theories. In this work, we present a novel distribution method for carbon nanotubes in the polymer matrix by using a new exponential power law distribution of carbon nanotube volume fraction. It is assumed that the SWCNTs are aligned along the beam axial direction and the distribution of the SWCNTs may vary through the thickness of the beam with different patterns of reinforcement. The rule of mixtures is used in order to obtain material properties of the CNTRC beams. Hamilton's principle is used in deriving the equations of motion. The validity of the free Vibration results is examined by comparing them with those of the known data in the literature. The results that obtained indicate that the carbon nanotube volume fraction distribution play a very important role on the free vibrations characteristics of the CNTRC beam.

An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities

  • Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.255-265
    • /
    • 2017
  • In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.