• Title/Summary/Keyword: beam spot

Search Result 285, Processing Time 0.027 seconds

Study on the Core Loss Improvement of SiFe Plate in Relation with Laser Pulse Width in the Laser Scribing (레이저 스크라이빙에 있어서 레이저의 펄스폭에 따른 규소강판의 코어손실 개선 연구)

  • Ahn, Seung-Joon;Park, Chul-Geun;Ahn, Seong-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.320-324
    • /
    • 2005
  • The core loss of $3\%$ SiFe is strongly dependent on silicon content, impurities, permeability, and domain structure of the SiFe. Domain refining has been proved to be very good method for reduction of core loss in high permeability grain oriented SiFe, and laser scribing is well-blown as an effective and industrially important method of domain refinement. In this work, magnetic domain refinement has been carried out by using a pulsed Nd : YAG laser, and the core losses have been measured and analyzed to and optimal parameters of the laser treatment. The laser hem was focused with a spot size of $100{\mu}m$ and pulse energy of 10${\~}$35mJ and the lines were scribed with a period of ${\~}$5mm. The core loss was improved up to $17\%$ with 30 ns-Nd : YAG laser beam in $3\%$ SiFe.

Experimental study to investigate the structural integrity of welded vehicle structure for BSR (Buzz, Squeak, Rattle) noise by vibration measurement (진동 특성을 이용한 접합된 차량 구조의 BSR(Buzz, Squeak, Rattle) 소음 강건성 관측에 대한 실험연구)

  • Kwak, Yunsang;Lee, Jongho;Park, Junhong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.334-339
    • /
    • 2019
  • In this study, the vibration test method to nondestructively evaluate the possibility of vehicle BSR (Buzz, Squeak, Rattle) noise generation in spot-welded structures was proposed. The weld quality was predicted by analyzing the local vibration transmission characteristics for the beam-shaped structure attached to testing spots. The bending stiffness was evaluated from the identified vibration properties. From the change in the stiffness, the weld quality was evaluated. For verification of the proposed method, the welded specimens were fabricated with partial changes in welding parameters. The local vibration transfers were measured. The frequency bands affected by the weld quality was identified. The capability of evaluating the welding parameters including defect position and quality variations was investigated. The proposed method enables fast quality evaluation to minimize the possibility of BSR noise generation in the manufactured vehicle.

Field-in-Field Technique to Improve Dose Distribution in the Junction of the Field with Head & Neck Cancer (Field-in-Field Technique을 이용한 두경부암의 접합부위 선량개선에 관한 고찰)

  • Kim, Seon-Myeong;Lee, Yeong-Cheol;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • Purpose: In treating head and neck cancer, it is very important to irradiate uniform dose on the junction of the bilateral irradiation field of the upper head and neck and the anterior irradiation field of the lower neck. In order to improve dose distribution on the junction, this study attempted to correct non uniform dose resulting from under dose and over dose using the field-in-field technique in treating the anterior irradiation field of the lower neck and to apply the technique to the treatment of head and neck cancer through comparison with conventional treatment. Materials and Methods: In order to examine dose difference between the entry point and the exit point where beam diffusion happens in bilateral irradiation on the upper head and neck, we used an anthropomorphic phantom. Computer Tomography was applied to the anthropomorphic phantom, the dose of interest points was compared in radiation treatment planning, and it was corrected by calculating the dose ratio at the junction of the lower neck. Dose distribution on the junction of the irradiated field was determined by placing low-sensitivity film on the junction of the lower neck and measuring dose distribution on the conventional bilateral irradiation of the upper head and neck and on the anterior irradiation of the lower neck. In addition, using the field-in-field technique, which takes into account beam diffusion resulting from the bilateral irradiation of the upper head and neck, we measured difference in dose distribution on the junction in the anterior irradiation of the lower neck. In order to examine the dose at interest points on the junction, we compared and analyzed the change of dose at the interest points on the anthropomorphic phantom using a thermoluminescence dosimeter. Results: In case of dose sum with the bilateral irradiation of the upper head and neck when the field-in-field technique is applied to the junction of the lower neck in radiation treatment planning, The dose of under dose areas increased by 4.7~8.65%. The dose of over dose areas also decreased by 2.75~10.45%. Moreover, in the measurement using low-sensitivity film, the dose of under dose areas increased by 11.3%, and that of over dose areas decreased by 5.3%. In the measurement of interest point dose using a thermoluminescence dosimeter, the application of the field-in-field technique corrected under dose by minimum 7.5% and maximum 17.6%. Thus, with the technique, we could improve non.uniform dose distribution. Conclusion: By applying the field-in-field technique, which takes into account beam divergence in radiation treatment planning, we could reduce cold spots and hot spots through the correction of dose on the junction and, in particular, we could correct under dose at the entry point resulting from beam divergence. This study suggests that the clinical application of the field-in-field technique may reduce the risk of lymph node metastasis caused by under dose on the cervical lymph node.

  • PDF

A study on the Design and Application of a TIR Lens for Realizing A Compact Spot-Type UV Curing Machine Optical System (컴팩트한 Spot형 UV 경화기 광학계를 구현하기 위한 TIR 렌즈 설계 및 응용에 관한 연구)

  • Kim, Yu-Rim;Heo, Seung-Ye;Lee, Sang-Wook;Kim, Wan-Chin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.255-264
    • /
    • 2022
  • The conventional spot-type UV curing machine configures a collimator optical system using a plurality of lenses so that the light beam is incident through an optical cable. In order to increase the transmission light efficiency, a collimator optical system composed of three or more lenses is required, and accordingly, it is difficult to align the optical system, and it is difficult to implement the system compactly. In this study, a single TIR lens collimator that can realize the same level of spot diameter and light efficiency as the conventional collimator optical system composed of three lenses was designed. Through this, the light efficiency at the curing area with the minimum illuminance deviation was 33.2 %, which was similar to the performance of the reference collimator optical system, and the illuminance deviation on the curing area was 18.8 %, ensuring acceptable performance. In addition, by arranging a fly-eye lens with field flattening function at the front end of the condensing lens, the effective curing area diameter was reduced from 5.0 mm to 3.0 mm, enabling higher curing energy density to be realized. In addition, it was confirmed that the illuminance deviation can be greatly improved to a level of 14.4%.

Plasma-Assisted Molecular Beam Epitaxy of InXGa1-XN Films on C-plane Sapphire Substrates (플라즈마분자선에피탁시법을 이용한 C-면 사파이어 기판 위질화인듐갈륨박막의 에피탁시 성장)

  • Shin, Eun-Jung;Lim, Dong-Seok;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2012
  • We report plasma-assisted molecular beam epitaxy of $In_XGa_{1-X}N$ films on c-plane sapphire substrates. Prior to the growth of $In_XGa_{1-X}N$ films, GaN film was grown on the nitride c-plane sapphire substrate by two-dimensional (2D) growth mode. For the growth of GaN, Ga flux of $3.7{\times}10^{-8}$ torr as a beam equivalent pressure (BEP) and a plasma power of 150 W with a nitrogen flow rate of 0.76 sccm were fixed. The growth of 2D GaN growth was confirmed by $in-situ$ reflection high-energy electron diffraction (RHEED) by observing a streaky RHEED pattern with a strong specular spot. InN films showed lower growth rates even with the same growth conditions (same growth temperature, same plasma condition, and same BEP value of III element) than those of GaN films. It was observed that the growth rate of GaN is 1.7 times higher than that of InN, which is probably caused by the higher vapor pressure of In. For the growth of $In_xGa_{1-x}N$ films with different In compositions, total III-element flux (Ga plus In BEPs) was set to $3.7{\times}10^{-8}$ torr, which was the BEP value for the 2D growth of GaN. The In compositions of the $In_xGa_{1-x}N$ films were determined to be 28, 41, 45, and 53% based on the peak position of (0002) reflection in x-ray ${\theta}-2{\theta}$ measurements. The growth of $In_xGa_{1-x}N$ films did not show a streaky RHEED pattern but showed spotty patterns with weak streaky lines. This means that the net sticking coefficients of In and Ga, considered based on the growth rates of GaN and InN, are not the only factor governing the growth mode; another factor such as migration velocity should be considered. The sample with an In composition of 41% showed the lowest full width at half maximum value of 0.20 degree from the x-ray (0002) omega rocking curve measurements and the lowest root mean square roughness value of 0.71 nm.

The Output Characteristics of Low Repetition·High Power Nd:YAG Laser Using LLC Resonant Converter (LLC 공진형 컨버터를 활용한 저 반복·고출력 Nd:YAG 레이저의 출력특성)

  • Lee, Hee-Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.286-291
    • /
    • 2015
  • LLC resonant converter is used to control laser output power in Nd:YAG laser. Zero voltage switching (ZVS) is implemented to minimize the switching loss which is adopting the LLC resonant converter. In the spot welding processing of metal thin films, the processing quality is decided by the laser beam output energy of single pulse. We decide to the 50 [J] as the single pulse laser beam energy. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 58.2 [J] and the conversion efficiency of 2.52% at the discharge voltage of 620V and the discharge current of 861 [A] and the pulse repetition rate of 1 [Hz] at the charging capacitor of 12,000 [${\mu}F$].

Analysis of Frequency Response of Piezo Stages and Scanning Path Monitoring/Compensation for Scanning Laser Optical Tweezers (주사 레이저 광집게를 위한 압전 구동기 주파수 특성 분석과 주사 경로 추적 및 보상)

  • Hwang, Sun-Uk;Lee, Song-Woo;Lee, Yong-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.132-139
    • /
    • 2008
  • In scanning laser optical tweezers, high speed scanning stages are used to manipulate a laser beam spot. Due to the inertia of the stage, the output scanning signal decreases with increased frequency of the input signal. This discrepancy in the signals is difficult to observe since most of the energy from the laser beam is blocked out to avoid CCD damage. In this paper, we propose two methods to alleviate these problems. Firstly, frequency responses of piezo stages are measured to analyze the signal drops and the input signal is compensated accordingly. Secondly, an overlay of the scanning path is drawn on the live monitoring screen to enhance the visibility of the scanning path. The result is a drop-compensated scanning with clear path view.

Simulation of an X-ray Fresnel Zone Plate with Nonideal Factors

  • Chen, Jie;Fan, Quanping;Wang, Junhua;Yuan, Dengpeng;Wei, Lai;Zhang, Qiangqiang;Liao, Junsheng;Xu, Min
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Fresnel zone plates have been widely used in many applications, such as x-ray telescopes, microfluorescence, and microimaging. To obtain an x-ray Fresnel zone plate, many fabrication methods, such as electron-beam etching, ion-beam etching and chemical etching, have been developed. Fresnel zone plates fabricated by these methods will inevitably lead to some nonideal factors, which have an impact on the focusing characteristics of the zone plate. In this paper, the influences of these nonideal factors on the focusing characteristics of the zone plate are studied systematically, by numerical simulations based on scalar diffraction theory. The influence of the thickness of a Fresnel zone plate on the absolute focusing efficiency is calculated for a given incident x-ray's wavelength. The diffraction efficiency and size of the focal spot are calculated for different incline angles of the groove. The simulations of zone plates without struts, with regular struts, and with random struts are carried out, to study the effects of struts on the focusing characteristics of a zone plate. When a Fresnel zone plate is used to focus an ultrashort x-ray pulse, the effect of zone-plate structure on the final pulse duration is also discussed.

Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

An Experimental Study on the Vibration of the PWR Fuel Rod Supported by the Side-sloted Plate Springs (측면 절개된 판형 스프링으로 지지된 경수로 연료봉 진동의 실험적 고찰)

  • 최명환;강흥석;윤경호;송기남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.798-804
    • /
    • 2003
  • One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. A modal test in this paper is performed for a dummy rod 3,847 mm tall supported by eight New Doublet (ND) spacer grids. For the vibration test in air, nine accelerometers, one displacement sensor and one shaker are used for acquiring signals, and an I-DEAS TDAS software Is employed for analyzing the signals. Also, a finite element (FE) analysis is performed by a beam-spring simple model and a contact model simulating the contact phenomenon between the rod and the ND spring. And then, the results of the modal testing are compared with those of the FE analysis. The natural frequencies as well as the mode shapes obtained by the experiment have a greater similarity to the results by the contact model than the previous beam-spring model. In audition, for grasping whether or not the modal parameters are influenced by where shaking spot is, two kinds of tests are performed : one is for the shaker attached at the fourth span (center), the other is for the shaker at the fifth span that is one span nearer to the bottom of the rod. The latter shows higher MAC than the former Finally, the vibration displacements are measured in the range of 0.l12∼0.214 mm for the excitation force of 0.25∼0.75 N.