DOI QR코드

DOI QR Code

Study on the Core Loss Improvement of SiFe Plate in Relation with Laser Pulse Width in the Laser Scribing

레이저 스크라이빙에 있어서 레이저의 펄스폭에 따른 규소강판의 코어손실 개선 연구

  • Ahn, Seung-Joon (Department of Physics & Advanced Materials Science, Sunmoon University) ;
  • Park, Chul-Geun (Division of Information and Communication Engineering, Sunmoon University) ;
  • Ahn, Seong-Joon (Division of Information and Communication Engineering, Sunmoon University)
  • 안승준 (선문대학교 자연과학대학 신소재과학과) ;
  • 박철근 (선문대학교 공과대학 정보통신공학부) ;
  • 안성준 (선문대학교 공과대학 정보통신공학부)
  • Published : 2005.12.01

Abstract

The core loss of $3\%$ SiFe is strongly dependent on silicon content, impurities, permeability, and domain structure of the SiFe. Domain refining has been proved to be very good method for reduction of core loss in high permeability grain oriented SiFe, and laser scribing is well-blown as an effective and industrially important method of domain refinement. In this work, magnetic domain refinement has been carried out by using a pulsed Nd : YAG laser, and the core losses have been measured and analyzed to and optimal parameters of the laser treatment. The laser hem was focused with a spot size of $100{\mu}m$ and pulse energy of 10${\~}$35mJ and the lines were scribed with a period of ${\~}$5mm. The core loss was improved up to $17\%$ with 30 ns-Nd : YAG laser beam in $3\%$ SiFe.

[ $3\%$ ] 규소강판에 대한 코어손실 특성은 규소장판에 포함된 실리콘 함유량, 불순물의 농도, 투자율, 자구의 구조 등에 의존한다. 자구 미세화는 고 투자율을 갖는 규소강판의 코어손실을 감소시키는 좋은 방법이다. 본 연구에서는 펄스형 Nd : YAG 레이저를 규소강판에 조사함으로써 규소강판의 자구를 미세화 하여 코어손실을 최소화 할 수 있는 최적조건을 분석하였다. 조사된 레이저빔의 spot 크기는 $100{\mu}m$, 펄스 당 에너지는 10${\~}$35mJ, 스크라이빙 줄 간격은 5mm로 결정하였으며 펄스폭이 30ns인 Nd:YAG 레이저를 사용하여 규소강판의 코어손실을 최대 $17\%$까지 개선하였다.

Keywords

References

  1. B. Weidenfeller and W. Rieheman, J. Mag. Mag. Mater., 160, 136 (1996) https://doi.org/10.1016/0304-8853(96)00142-4
  2. D. Raybould, M. Meola, R. Bye, and S. K. Das, Mater. Sci. Eng. A, 241, 191 (1998) https://doi.org/10.1016/S0921-5093(97)00488-7
  3. T. Kubota, M. Fujikura, and Y. Ushigami, J. Mag. Mag. Mater., 215-216, 69 (2000) https://doi.org/10.1016/0304-8853(87)90243-5
  4. D. Ramin and W. Rieheman, J. Mag. Mag. Mater., 203, 298 (1999) https://doi.org/10.1016/S0304-8853(99)00258-9
  5. J. Li, Y. Gu, and Z. Guo, J. Mater. Processing Tech., 74, 292 (1998) https://doi.org/10.1016/S0924-0136(97)00274-4
  6. X. Zhu, Appl. Sur. Sci., 167, 230 (2000) https://doi.org/10.1016/S0169-4332(00)00530-4
  7. L. Li, Optics and Lasers in Eng., 34, 231 (2000) https://doi.org/10.1016/S0143-8166(00)00066-X
  8. H. Beyer, W. Ross, R. Rudolph, A. Michaelis, J. Uhlenbusch, and W. Viol, J. Appl. Phys., 70, 75 (1991) https://doi.org/10.1063/1.350246
  9. V. Oliveira and R. Vilar, J. Mater. Res., 12, 3206 (1997) https://doi.org/10.1557/JMR.1997.0140
  10. S. M. Meter and V. P. Veiko, Laser-Assisted Microtechnology, Springer-Verlag, Berlin, Chapt. 3, Chapt. 6
  11. S. V. Ponnaluri, R. Cherukuri, and P. A. Molian, J. Materials Processing Tech., 112, 199 (2001) https://doi.org/10.1016/S0924-0136(00)00845-1
  12. S. Patri, R. Gurusamy, P. A. Molian, and M. Govindaraju, J. Mater. Sci., 31, 1693 (1996) https://doi.org/10.1007/BF00372180
  13. A. J. Moses, lEE. Proc. Part A, 137, 233 (1990)
  14. T. Luchi, S. Yamaguchi, T. Ichiyama, M. Nakamura, T. Ishimoto, and K. Kuroki, J. Appl. Phys., 53, 2410 (1982) https://doi.org/10.1063/1.330828
  15. X. Liu, D. Du, and G Mourou, IEEE. J. Quant. Electron., QE33, 1706 (1997)
  16. S. Ahn, D. W. Kim, H. S. Kim, S. J. Ahn, and J. Cho, Microelectron. Eng., 69, 57 (2003) https://doi.org/10.1016/S0167-9317(03)00229-6