• Title/Summary/Keyword: beam spot

Search Result 285, Processing Time 0.027 seconds

Laser-Aided Direct Metal Deposition (DMD) Technology (레이저를 이용한 직접금속조형(DMD) 기술)

  • 지해성;서정훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.150-156
    • /
    • 2003
  • Direct Metal Deposition (DMD) is a new additive process producing three-dimensional metal components or tools directly from CAD data, which aims to take mold making and metalworking in an entirely new direction. It is the blending of five common technologies: lasers, CAD, CAM, sensors and materials. In the resulting process, alternatively called laser cladding, an industrial laser is used to locally heat a spot on a tool-steel work piece or platform, forming a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the metal pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is eventually built line-by-line, one layer at a time. DMD produces improved material properties in less time and at a lower cost than is possible with traditional fabrication technologies.

SERVICE AND NETWORK OPERATION OF THE MULTIBEAM SWITCHING SATELLITE COMMUNICATIONS SYSTEM

  • Choi Kyung Soo;Sin Cheon Sig;Jo Jin Ho;Lee Yong Min;Lee Seong Pal
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.351-355
    • /
    • 2004
  • A multibeam switching satellite system technology have started localized development to overcome the limitation of the frequency resource and geostationary orbit existing relay type satellite transponder and the required performance of the spot beam, and looked around the configuration and functions of the multibeam switching satellite communication system. This paper proposed that operation scheme and network control features for service definition, network architecture, transmission method of the natural disaster service network and public communication service network using this system.

  • PDF

Optimization of Diffractive Optical Elements by Genetic Algorithm

  • Yoon, Jin-Seon;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 2000
  • In this paper, a method based on the Genetic Algorithm(GA) for phase optimization is proposed. The programmable hybrid optical interconnection system implemented by the spatial light modula-tor is tested for a near-real-time optical processing. Designed diffractive grating has a 74.7[%] high diffraction efficiency and a $1.73 {\times}10^{-1}$ uniformity quantitatively. The dependence of characteris-tics on several parameters in the grating design are analyzed. Also, as a result of the geometrical transformation to obtain quantitative data for $3 {\times} 3$ spot beams, an objective optical experiment using CCD array detector produces the mean of beam intensity as a gray level of 202, the maximum value is 225, the minimum value is 186, and uniformity is quantitatively $1.93 {\times} 10^{-1}$, similar to the simulation result.

Characteristics of electric field in the liquid metal ion source with a suppressor

  • Cho, Byeong-Seong;Oh, Hyun-Joo;Song, Ki-Baek;Kang, Seung-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.88-88
    • /
    • 2010
  • The liquid metal ion sources(LMIS) in FIB system have many advantages of high current density, high brightness, and low ion energy spread. Most FIB systems use LMIS because the beam spot size of LMIS is smaller than of gas field ionization sources(GFIS). LMIS basically consists of a emitter(needle, anode), a reservoir(gallium) and a extractor(cathode). But several LMIS have new electrode called the suppressor. We investigated characteristics of LMIS with a suppressor. The characteristics of the threshold voltage and current-voltage (I-V) were observed under the varying extracting voltage with floated suppressor voltage, and under the varying suppressor voltages with fixed extractor voltage. We also simulated LMIS with the suppressor through CST(Computer Simulation Technology). We can explain characteristics of LMIS with a suppressor using the electric field.

  • PDF

Development of a Microspot Spectroscopic Ellipsometer Using Reflective Objectives, and the Ellipsometric Characterization of Monolayer MoS2

  • Kim, Sang Jun;Lee, Min Ho;Kim, Sang Youl
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.353-360
    • /
    • 2020
  • Adopting an elaborately designed reflective objective consisting of four mirrors, we have developed a rotating-polarizer-type microspot spectroscopic ellipsometer (SE) with an ultra-small spot size. The diameter of the focused beam, whether evaluated using a direct-image method or a knife-edge method, is less than 8.4 ㎛. After proper correction for the polarizing effect of the mirrors in the reflective objective, we unambiguously determine the dispersion of the complex refractive index and the thickness of monolayer MoS2 using the measured microspot-spectroellipsometric data. The measured ellipsometric spectra are sensitive enough to identify small variations in thickness of MoS2 flakes, which ranged from 0.48 nm to 0.67 nm.

Development of Optical Leveling System using Quarter Photodetector (4분할 위치검출소자를 활용한 광학식 레벨링 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.111-116
    • /
    • 2018
  • Recently, shape manufacturing method has been changed to a 3D printer. Since lamination type manufacturing method is the basis for forming a three-dimensional shape by repeated lamination, the horizontal accuracy of the lamination layer is very important. In the current paper, we have proposed a new leveling system to be installed in a large 3D printer. The light source was reflected from the water surface contained in the measuring device, and the inclination of the measuring device was measured from the light that entered into four regions of a quarter photodetector. The electrical signals generated differently according to the position of the beam spot incident on the quarter photodetector was acquired and compensated to be horizontal by using a motor mounted at the corner. Compared to a digital leveler, the newly developed leveling system gave errors of only 2 to 3%. This new device can be applied to various fields including the 3D printer in future.

A Study on the Optimization of IR Laser Flip-chip Bonding Process Using Taguchi Methods (다구찌법을 이용한 IR 레이저 Flip-chip 접합공정 최적화 연구)

  • Song, Chun-Sam;Ji, Hyun-Sik;Kim, Joo-Han;Kim, Jong-Hyeong;Ahn, Hyo-Sok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.30-36
    • /
    • 2008
  • A flip-chip bonding system using IR laser with a wavelength of 1064 nm was developed and associated process parameters were analyzed using Taguchi methods. An infrared laser beam is designed to transmit through a silicon chip and used for transferring laser energy directly to micro-bumps. This process has several advantages: minimized heat affect zone, fast bonding and good reliability in the microchip bonding interface. Approximately 50 % of the irradiated energy can be directly used for bonding the solder bumps with a few seconds of bonding time. A flip-chip with 120 solder bumps was used for this experiment and the composition of the solder bump was Sn3.0Ag0.5Cu. The main processing parameters for IR laser flip-chip bonding were laser power, scanning speed, a spot size and UBM thickness. Taguchi methods were applied for optimizing these four main processing parameters. The optimized bump shape and its shear force were modeled and the experimental results were compared with them. The analysis results indicate that the bump shape and its shear force are dominantly influenced by laser power and scanning speed over a laser spot size. In addition, various effects of processing parameters for IR laser flip-chip bonding are presented and discussed.

Beam Control Method of Multiple Array Antenna Using The Modified Genetic Algorithm (변형된 유전자 알고리즘을 이용한 Multiple Array 안테나의 빔 제어방식)

  • Hyun, Kyo-Hwan;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.39-45
    • /
    • 2007
  • This paper presents a novel scheme that quickly searches for the sweet spot of multiple array antennas, and locks on to it for high-speed millimeter wavelength transmissions, when communications to another antenna array are disconnected. The proposed method utilizes a modified genetic algorithm, which selects a superior initial group through preprocessing in order to solve the local solution in agenetic algorithm. TDD (Time Division Duplex) is utilized as the transfer method and data controller for the antenna. Once the initial communication is completed for the specific number of individuals, no longer antenna's data will be transmitted until each station processes GA in order to produce the next generation. After reproduction, individuals of the next generation become the data, and communication between each station is made again. Simulation results of 1:1, 1:2, 1:5 array antennas confirmed the efficiency of the proposed method. The 16bit split is 8bit, but it has similar performance as 16bit gene.

Reverse Design of F-Theta Lens for Compact Laser Scanner (소형 2차원 레이저 스캐너용 F-theta 렌즈 역설계)

  • Choi, Hae Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.213-218
    • /
    • 2017
  • In this study, a reverse design of the F-theta lens was proposed for a 2D scanner in remote welding applications. The curvature and distance of the lens were set as variables, and the focal length of the lens was set as the marginal ray height. The ZEMAX commercial software was used to perform a simulation with unlimited iterations for the optimization process. The target value was optimized using the internal Merit function with the weight factors of focal length and spot diameter. The number of lenses was four, and the focal length obtained from the results was 135mm that is slightly less than that of the commercial lens, which is set with a focal length of 185 mm. The calculated spot diameters are $1.3{\mu}m$, $6.2{\mu}m$, and $16.1{\mu}m$ for $0^{\circ}$, $12.5^{\circ}$ and $23^{\circ}$ of incident laser beam, respectively. It is expected that an optimized lens design is possible by performing the reverse design of a lens by the ray tracing method.

Design and fabrication of a holographic scanner using the ray tracing method (광선 추적을 이용한 홀로그래픽 스캐너의 설계 및 제작)

  • 김종재;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 1999
  • Low-aberration holographic scanners that eliminate the need for lenses and mirrors promise to greatly reduce the cost of laser printers and image scanners. In this study, a holographic optical element that can simultaneously scan and focus a laser beam is designed with analytic ray tracing method. An analytic and experimental work is conducted in which we investigated the hologram structure and hologon configuration for linear aberration-free scanning. For a prototype scanner, a He-Ne laser is used to manufacture and reconstruct the hologram, and the measured bow is about $\pm$133$\mu\textrm{m}$ and spot size(half-intensity beamwidth) in under 100$\mu\textrm{m}$ for a 300 mm scan length without using a correcting lens or mirror. The diffraction efficiency is about 55$\pm$5%, which is acceptably flat. The experimentally measured results agrees with the computed values. From this fact, we can conclude that the computed results using ray tracing method are practical and useful values, and have a potential for use in high resolution laser printers.

  • PDF